banner banner banner
Космогония двойной звезды Юпитер – Солнце
Космогония двойной звезды Юпитер – Солнце
Оценить:
 Рейтинг: 0

Космогония двойной звезды Юпитер – Солнце


Рисунок 1

Рисунок 2

Рисунок 3

Заметим, что в четырёх-дипольной структуре возникает ещё два связующих излучения: одно между 1-м и 4-м диполем и ещё завершающее между 3-м и 4-м диполем, а всего после образования двух-дипольной структуры 3 дополнительных связующих излучения. Эти дополнительные излучения при объединении магнитиков в четырёх-дипольную структуру сопровождаются уплотнением её во внутренний квадруполь – «ядро» получившейся ячейки. Её уплотнение достигается вылетанием 3-х нейтрино. Если это происходит мгновенно и одновременно в нескольких структурах, то выскочившие нейтрино могут успеть, а могут и не успеть поглотиться всё ещё свободными диполями.

Как вы смогли заметить, по мере усложнения материи нейтрино как бы вытесняются из формирующихся ячеек и накапливаются вне их объёма, что впоследствии при достаточном их накоплении становится причиной создания громадного давления внутри звезды.

Скачок давления в звезде вызван заполнением зоны рождения вещества 4-х дипольными структурами.

А вот теперь обратим внимание на то, что мы с вами и не заметили: ведь на наших глазах в виде 4-х дипольной структуры родился атом гелия – следующая по сложности за водородом разновидность элементарного состояния вещества, синтезированная звездой. Это элемент Ще с порядковым номером 2 в Периодической таблице Менделеева и массовым числом 4 (таблица Менделеева приведена в конце параграфа 4, в конце урока 1, также как Иллюстрация 1 в цветной вклейке).

А из чего родился атом гелия? Оказывается, из атомов водорода. Ведь исходный магнитик – это и нейтрон, и в то же время – атом водорода. В звёздных недрах в виде нейтрона магнитик стационарно существует недолго, не более 17 минут, далее он распадается с поглощением какого-нибудь внедряющегося нейтрино. Вне звёздных недр – в виде атома водорода – как пульсирующий диполь, сжимающийся и растягивающийся попеременно. И за счёт этого может существовать стабильно, непрерывно излучая и поглощая частичку нейтрино, с огромной частотой порядка 10 в пятнадцатой степени раз в секунду.

2. Что известно о зоне рождения вещества?

Где же в звезде происходит рождение вещества? Как велика зона синтеза текущего периода и где она находится? Зона синтеза – это вполне определённая ограниченная в размерах область звезды, заполненная ионизованными атомами водорода, – плазмой. Это смесь положительных и отрицательных частичек, а именно протонов р

и электронов е

. Зона синтеза названа замечательным русским учёным, геологом и космофизиком Афанасием Евменовичем Ходьковым (1909–2003) зоной звёздной трансформации (ЗЗТ).

Это сравнительно тонкий слой плазменной субстанции в объёме звезды, заглублённый под её поверхностью не очень глубоко – порядка десятой части радиального размера сферы звезды. Причём зона синтеза текущего периода в своих размерах ограничена необходимыми параметрами реакций между элементарными частицами плазмы для образования из них более сложных структур. Именно потому, что эта зона чётко ограничена в размерах, то она заполняется синтезируемыми усложнёнными структурами в течение вполне определённого времени, хотя и очень длительного. Это – миллионы и миллиарды лет.

Пока в зоне синтеза есть свободные диполи, не успевшие объединиться в более сложные структуры, они могут поглощать нейтрино, выскакивающие в зоне реакций объединения. Но когда вся зона синтеза окончательно заполняется четырёх-дипольными структурами, оказывается, что выскочившим нейтрино некуда деваться, они мечутся и не могут найти выход. По достижении заполнения зоны синтеза синтезированными атомными ячейками внезапное увеличение давления не может уравновеситься весом вышележащих слоёв и наружного нейтринного давления на поверхность звезды. И что произойдёт? По всей видимости, вспышка и выброс зоны синтеза с наружной оболочкой звезды. В астрономии это явление носит название вспышки «новой». От звезды взрывообразно отделяется светящаяся плазменная оболочка с частью Зоны синтеза, получающей от звезды соответствующий момент вращения. Так рождение вещества, в данном случае гелия, приводит к рождению детища звезды из сброшенной ею оболочки.


Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги
(всего 10 форматов)