Физика: парадоксальная и объяснимая
100 открытых задач
Ирина Андржеевская
Анатолий Гин
Сергей Разумбаев
Редактор Александр Кавтрев
Редактор Павел Шиварёв
Дизайнер обложки Вера Филатова
Корректор Алёна Деньгова
© Ирина Андржеевская, 2024
© Анатолий Гин, 2024
© Сергей Разумбаев, 2024
© Вера Филатова, дизайн обложки, 2024
ISBN 978-5-0062-8194-3
Создано в интеллектуальной издательской системе Ridero
Предисловие для решателей
Эта книга для тех, кто задаётся вопросами. Разными: от «почему кипит чайник» до «как рождаются звёзды»… Вообще, на эти и многие другие вопросы отвечает госпожа Физика. Но на вопросы важно не только ответить. Их важно ещё и правильно поставить, превратить в задачи. Этому и посвящена книга.
В ней нет формул, нет необходимости производить вычисления. Зато здесь вы найдёте то, что связывает обыденные вещи, с которыми вы сталкиваетесь каждый день, и науку.
Если задача не раскололась с первой попытки, не сдавайтесь – продолжайте думать. Умение шевелить мозгами дорогого стоит. Не огорчайтесь, если идея не пришла с ходу. Докапывайтесь до сути! Пусть задачка немного поживёт с вами, помучает вас – не страшно. Покачайте её, приручите, как опытный дрессировщик тигра, – и задача сдастся, спрячет когти и ласковым котёнком свернётся у вас на коленях.
Кстати, многие задачи с удовольствием решают и взрослые. В этом особенность открытых задач: их интересно решать не только в школе на уроках, но и в жизни. Попробуйте «нагрузить» ими свою семью во время прогулки со старшими, по дороге в общественном транспорте или на отдыхе. Совместное «укрощение диких задач» – отдельное удовольствие!
Внимание: иллюстративные рисунки для вас, решателей, создавал искусственный интеллект, а именно нейросеть Dall E3. Известно, что нейросеть – дама капризная, творческая, иногда всё видит под каким-то «своим углом». Так что чуть что – претензии к ней.
Предисловие для учителей
Удивить, вовлечь, заинтересовать – вот что важно сделать, чтобы урок физики прошёл интересно и плодотворно. Прекрасный помощник в этом – открытые задачи.
С открытой задачи можно начинать изучение новой темы.
При этом необязательно её сразу решать. Удивительный факт заинтересует, «разбудит мышление», а новый материал станет тем ключиком, который поможет ответить на поставленные вопросы, найти решение. Этот приём называется «Отсроченная отгадка»1.
Открытой задачей можно закончить урок.
Предложите поработать с ней дома, поискать дополнительную информацию, порешать с помощью взрослых и начните с неё следующий урок. Такое креативное домашнее задание ребята не просто сделают с удовольствием, но и будут обсуждать между собой и в семье.
Можно использовать открытые задачи для повторения, закрепления пройденного материала.
При этом происходит актуализация знаний, наглядно демонстрируется практическая ценность усвоенных понятий, развивается системное мышление.
Саму постановку задачи и её решение можно проводить разными способами, которые имеют свои особенности2.
1. При формулировке условия давайте его не полностью, предлагайте детям задавать дополнительные вопросы для уточнения условия (приём «Пресс-конференция»).
2. Решать задачи можно по-разному. Один из способов – это поиск решения во время игры «Да-нетка», когда дети задают вопросы, на которые можно отвечать только «да», «нет» или «не знаю».
3. Хорошо решаются открытые задачи с использованием метода «Мозговой штурм» в паре, в небольшой группе или всем классом.
4. Особенно увлекательно работать над задачами в группе, когда идея одного даёт толчок к размышлению для других. Часто подобные задачи используют в играх «Что? Где? Когда?», в «Креатив-боях».
Возможно, какие-то задачи учащиеся решат легко, а при решении других возникнут трудности. Но это хорошо! Не спешите выдавать ответ! Чем упорнее будет «сопротивляться» задача, тем ценнее победа, тем больше удовольствие от решения.
Многие ответы сопровождаются дополнительной увлекательной информацией «Кстати…» или дополнительной подзадачей «Подумайте…». Это позволяет не просто рассказать детям что-то интересное по теме задачи, но и сформулировать новые вопросы и продолжить цепочку решений. «Хотите знать больше?» – расширяет знания по данному вопросу. Для поиска видео мы сформулировали для вас текстовые запросы, по которым в любой поисковой системе в интернете можно легко перейти на дополнительный материал и найти нужную страницу в сети.
В книге для каждой задачи указан уровень сложности:
* – задача несложная, рекомендуется для разминки;
** – задача посложнее, рекомендуется для самостоятельной работы, для повторения пройденного материала;
*** – ещё более сложная задача, рекомендуется для групповой работы;
**** – очень сложная задача, рекомендуется для «Креатив-боёв» или олимпиад.
1. Зачем нужна физика?
ЗАДАЧА 1. РЕКА ТЕЧЁТ ВСПЯТЬ***
Блогеры и ютуб-каналы любят показывать загадки природы. Например, гравитационные аномалии. Говорят, одна такая аномалия есть в Армении, у подножия горы Арагац. Каждый день любители необычного наблюдают тут чудеса: горная река течёт снизу вверх, металлический шарик катится вверх по дороге и даже машина, с заглушённым двигателем, сама начинает подниматься по склону. А ещё пешеходам кажется, что в гору им идти гораздо легче, чем с горы. Все они с удивлением замечают, что сила тяжести тут действует как-то не так.
Видео об этом явлении можно посмотреть по запросу «Аномалия в Армении: река течёт вверх, а машина сама забирается в гору».
Действительно ли гравитация у подножия горы Арагац действует как-то иначе или наблюдаемые там явления можно объяснить, не прибегая к сверхъестественному?
Предложите гипотезу. Найдите для неё доказательство.
Контрольный ответ
Прежде всего важно понять, что вывод о том, в каком направлении движется река, делается на основании зрительного восприятия. И то, что автомобиль едет вверх, тоже определяется визуально. Но в данном случае этот метод наблюдения приводит к неверному выводу.
Наблюдаемые явления – пример оптической иллюзии. В горах нет чётко выраженной линии горизонта. В любых гористых местностях небольшой наклон дороги вниз может восприниматься мозгом как подъём. Поэтому людям кажется, что шарик и машина катятся вверх и речка течёт в гору. Течёт же она, как и положено, вниз под действием силы тяжести.
Чтобы проверить правильность восприятия, нужно использовать другие методы исследования. Задача сводится к тому, чтобы измерить высоту точек над уровнем моря в начале и в конце участка дороги и сравнить их. На практике для этого можно использовать гидравлический уровень. Этот способ, известный строителям с древности, позволяет точно определить плоскость, параллельную горизонту.
Хотите знать больше?
Видео о том, как мозг ошибочно воспринимает перспективу по неверно воспринятой зрительной информации, можно посмотреть по запросу «Искажённая реальность. Комната Эймса».
Чтобы понять принцип работы гидравлического уровня, посмотрите видео по запросу «Гидроуровень и принцип работы».
ЗАДАЧА 2. ПАРАДОКС ЗАМЕРЗАНИЯ****
Однажды школьник из Танзании Эрасто Мпемба учился готовить мороженое на уроке кулинарии и заметил, что горячая смесь застыла в морозильнике быстрее, чем охлаждённая. Удивлённый, он обратился за разъяснениями к своему учителю физики. Но тот лишь посмеялся, сказав, что такого не может быть. «Это не всемирная физика, а физика Мпембы» – так он прокомментировал открытие ученика.
А между тем эффект был описан ещё Аристотелем в IY веке до нашей эры. Упоминал о нём и Френсис Бэкон, и Рене Декарт, и даже один из основателей США – Бенджамин Франклин.
Эффект состоит в том, что горячая вода, выставленная на мороз, замерзает быстрее холодной воды той же массы. Хотя здравый смысл и наши познания в области термодинамики говорят о том, что должно быть наоборот!
В чём причина «эффекта Мпембы»? Почему горячая вода замерзает быстрее холодной?
Контрольный ответ
Существуют различные объяснения данного эффекта.
Одно из них дал Бенджамин Франклин, проведя серию экспериментов. Горячая вода быстрее испаряется, а следовательно, быстрее уменьшается её масса. Время замерзания воды зависит не только от её начальной температуры, но и от массы. Чем меньше воды, тем быстрее она замерзает. Поэтому и наблюдается данный эффект.
Другое объяснение сводится к тому, что у стакана с горячей водой лучше контакт с охлаждающей поверхностью (под тёплым стаканом плавится снег, и вода заполняет воздушные пустоты). А значит, и теплоотдача выше, чем у стакана, под донышком которого присутствуют пузырьки воздуха.
Но не всё так просто. Ряд экспериментов показывает, что даже при отсутствии указанных факторов эффект всё же наблюдается… Возможно, это связано с особыми химическими свойствами воды. Но пока вопрос остаётся открытым… А вы любите открытые вопросы?
Хотите знать больше?
Подробнее об эффекте читайте по запросу «Ещё одно объяснение эффекта Мпембы».
Кстати…
Таких людей, как Бенджамин Франклин, называют полиматами. Полимат – это универсальный человек. Его кругозор не ограничивается какой-то одной областью. Наука, искусство, политика… любая сфера человеческой деятельности – поле его интересов. Таким и был Франклин!
Это один из самых значительных государственных деятелей XVIII века. Его подпись стоит под документами, учреждавшими основание США. Он входит в число семи отцов-основателей этой страны.
Но Франклин был не только политиком, но и замечательным изобретателем! Он изобрёл молниеотвод, бифокальные очки, электрофорную машину, электростатический двигатель, экономичную отопительную печь, стеклянную гармонику, оригинальную конструкцию кресла-качалки…
И в науке сделал немало. Например, именно благодаря Франклину электрические заряды называют «положительными» и «отрицательными».
Он изучал атмосферное электричество (молнии) и объяснил принцип действия конденсатора.
А ещё он писал книги…
А ещё изобрёл систему тайм-менеджмента…
А ещё…
Авторство афоризма «Время – деньги!» тоже принадлежит Франклину.
Можем добавить от себя: «Франклин – деньги!», ведь его портрет располагается на 100-долларовой купюре США.
Портрет Бенджамина Франклина на лицевой стороне банкноты номиналом 100 USD
ЗАДАЧА 3. СТРИЖКА В КОСМОСЕ*
В космосе, на Международной космической станции, даже такая простая процедура, как стрижка волос, становится опасной. Но космонавты живут на МКС месяцами, и стрижка им просто необходима.
Почему стрижка в космосе опасна?
Какие проблемы возникают и как с ними справиться?
Контрольный ответ
Космонавты на МКС работают в условиях невесомости. Остриженные волосы не падают вниз, а парят в воздухе и разлетаются по всей станции. Любой волосок может попасть если не в глаз, то внутрь оборудования и привести к неисправности. При этом жизненно важные элементы станции могут выйти из строя.
Поэтому для стрижки в условиях невесомости разработали машинку-пылесос, которая сразу всасывает остриженные волосы.
Хотите знать больше?
Видео о том, как космонавты стригутся в космосе, можно посмотреть по запросу «Как стригут волосы на МКС».
Аналоги
Похожая проблема возникает с мытьём в невесомости. Разлетающиеся по космическому кораблю капли воды могут быть ещё более опасны, чем частички волос. Вода – хороший проводник тока. И если она попадёт в электронные устройства, то может стать причиной сбоя в их работе.
Видео о том, как космонавты совершают гигиенические процедуры, можно посмотреть по запросу «Как принимают душ на МКС».
ЗАДАЧА 4. МЯГКАЯ ПОСАДКА***
Когда спускаемый космический аппарат приближается к Земле, его огромная скорость гасится торможением о воздух. Затем выбрасывается парашют. Но даже на парашюте скорость спуска всё ещё велика. Для снижения силы удара о Землю в метре от её поверхности должны включиться реактивные двигатели мягкой посадки, сопла которых направлены вниз. В результате работы двигателей скорость погасится, и корабль встретится с поверхностью Земли без удара.
Но как двигатели «узнают», что до столкновения с Землёй остался всего один метр?
Как автоматически включить двигатели вовремя?
Контрольный ответ
Современный спускаемый аппарат снабжён сверхточным гамма-лучевым высотомером. Этот прибор измеряет расстояние до поверхности Земли и запускает двигатели мягкой посадки за мгновение перед ударом о Землю.
Но система посадки первых советских спускаемых аппаратов «Восток» и «Восход» была устроена иначе. Не доверяя жизнь космонавта не надёжной в те времена электронике, инженеры создали простой контактный пускатель. В свёрнутом положении он представлял собой катушку с намотанной на неё пружинной лентой. Когда корабль снижался до заданной высоты, лента сматывалась с катушки и свисала таким образом, что её конец находился на 3 м ниже спускаемого аппарата. Когда лента касалась поверхности Земли, замыкался контакт и включались двигатели мягкой посадки. Это устройство было простым и очень надёжным!
Хотите знать больше?
Видео о процедуре посадки спускаемого аппарата можно посмотреть по запросу «Как готовится посадка спускаемого аппарата».
Подробнее о том, как происходила посадка первых спускаемых аппаратов советских космических кораблей, можно почитать по запросу «Спускаемый аппарат кораблей «Восток» и «Восход».
2. Механика
2.1. Движение и сила
ЗАДАЧА 5. РЫБКИ ПОДРАЖАЮТ КОРАБЛЯМ?****Если косяк мелкой рыбы не тревожат хищники, то стайка очень быстро принимает форму подводной лодки.
Рыбки хотят, чтобы акулы принимали их стаю за подводную лодку или дело в чём-то другом?
Контрольный ответ
Косяки рыб появились задолго до подводных лодок. Поэтому более справедливо говорить, что подлодки подражают косякам рыб. Ведь задача инженеров заключается в том, чтобы спроектировать такой корабль, при движении которого вода оказывала бы минимальное сопротивление. Форма тела с самой хорошей обтекаемостью давно известна: это форма вытянутой в длину капли.
Конечно, рыбки не могут заранее договориться между собой и решить: «Плывём в форме капли, чтобы экономить силы». Но каждая рыбка в отдельности занимает такое положение в косяке, чтобы вода оказывала наименьшее сопротивление.
Положение строго за предыдущей – невыгодно. Наилучшим является положение: «за… и чуть-чуть в сторону». Рыба, плывущая впереди, увлекает часть потока воды за собой, и следующая движется в этом потоке себе на пользу.
Подумайте…***
О том, что тело каплевидной формы имеет наименьшее гидродинамическое сопротивление, было известно ещё в конце XIX века. Но подводные лодки в форме капли стали строить только в конце 60-х гг. XX века. Почему каплевидные корпуса стали строить с таким опозданием?
Контрольный ответ
В начале XX века подводные лодки были не столько подводными, сколько «ныряющими». Бóльшую часть боевого дежурства они проводили в надводном положении и только перед атакой погружались под воду. А в надводном положении форма крейсера выгоднее каплевидной.
Подводная лодка времён Первой мировой войны была больше похожа на крейсер. Немецкая подводная лодка SM U-35 в порту Картахены, Испания, 1916 г.
Лодка середины 80-х гг. имеет выраженную каплевидную форму. Подводная лодка дизель-электрического класса
Аналоги
Аналогично обтекаемую форму имеют современные самолёты, автомобили и т. д.
Знаменитая картинка 30-х гг. XX века из рекламы легковой «Татры» с популярным объяснением преимуществ хорошей аэродинамики
ЗАДАЧА 6. ЭВЕРЕСТ – НЕ САМАЯ ВЫСОКАЯ ГОРА?***
В энциклопедиях пишут, что Джомолунгма (Эверест) – самая высокая гора на Земле. Её вершина находится на высоте 8 848,86 м над уровнем моря и считается самой высокой точкой Земли.
А можно ли как-то обосновать утверждение, что на нашей планете есть горы выше Джомолунгмы?
Контрольный ответ
Да, в географии принято измерять высоту гор относительно уровня моря. Но это не единственно возможная система отсчёта. Ничто не мешает нам выбрать другую, ведь все системы отсчёта в классической механике равноправны…
Если за точку отсчёта брать уровень моря, то самая высокая гора – Эверест, в этом нет никаких сомнений.
Но если вести отсчёт не от уровня моря, а от подножия гор на океаническом дне, то самой высокой горой окажется вовсе не Эверест, а Мауна-Кеа, что на Гавайях. Её высота от подножия – более 10 тысяч метров.
Если же за точку отсчёта взять центр Земли, придётся учесть, что наша планета не шар, а геоид. Она «сплюснута» у полюсов и более «выпукла» на экваторе. Любой, кто стоит у экватора, уже дальше от центра Земли, чем тот, кто находится ближе к полюсам. И если отсчитывать от центра Земли, то самая высокая гора – это Чимборасо в Андах, она расположена недалеко от экватора и её вершина примерно на 2 км дальше от центра Земли, чем вершина Эвереста.
Хотите знать больше?
Расчёты высоты гор от центра Земли выполнил в начале нашего века инженер-геодезист Джозеф Сенн. Проверил их директор Нью-йоркского планетария астрофизик и популяризатор науки Нил Деграсс Тайсон.
Как видите, всё в мире относительно. Даже рекордная высота Эвереста.
Кстати…
Споры о том, какая система отсчёта «правильная», велись столетиями, причём не всегда научными методами. Джордано Бруно был казнён в том числе за то, что отстаивал идеи Коперника о гелиоцентрической картине мира. Система отсчёта, в центр которой вместо Земли ставилось Солнце, считалась в те времена еретической, богопротивной.
Сегодня благодаря Копернику, Галилею, Эйнштейну и многим другим учёным вы знаете, что все инерциальные системы отсчёта равноправны и физические законы от их выбора не зависят.
ЗАДАЧА 7. ОЧЕНЬ ОСОБЕННАЯ СИЛА?****
На первых уроках физики вы узнаёте о том, что силы в механике бывают трёх видов. Это силы тяготения, силы упругости и силы трения.
Под действием сил тяготения яблоко падает на Землю, а Земля вращается вокруг Солнца.
Силы упругости обеспечивают целостность предметов и не дают им непредсказуемо распадаться на части и произвольным образом соединяться в новые предметы.
А силы трения вечно сопутствуют любому реальному движению. Иногда они «мешают» телу двигаться, снижая его скорость, а иногда, наоборот, «помогают». Мы ходим благодаря силе трения. Представьте, что вы оказались на скользком льду, и сомнения отпадут: сила трения «помогает» нам идти.
К какому виду сил относится сила Архимеда, которая выталкивает тела, погружённые в жидкость или газ?
Контрольный ответ
Не так уж и прост этот вопрос. Вообще сила Архимеда порождается давлением, существующим внутри жидкости. А давление в жидкости возникает благодаря силам тяготения: каждый слой жидкости давит на слой ниже и так до самого дна: чем глубже погружаемся, тем давление больше. Поэтому можно сказать, что сила Архимеда – это сила гравитационная. В невесомости силы Архимеда нет!
Но ведь силы тяготения на Земле направлены к центру Земли, а сила Архимеда в противоположную сторону! Как же так?
Да, по происхождению сила Архимеда – гравитационная, но непосредственно на тело действуют силы упругости молекул воды, контактирующих с телом. Они-то и «толкают» его вверх. С этой точки зрения сила Архимеда – это сила упругости.
Хотите знать больше?
Видео по теме можно посмотреть по запросу «В бассейне без гравитации. Фильм „Пассажиры“ (2016)».
ЗАДАЧА 8. КАРАУЛ ЗАКРИЧАЛ, ТАК БЕЗНОГИЙ ПОБЕЖАЛ…**
(русская пословица)
Морские гребешки обычно лежат на дне и занимаются единственным делом всей своей жизни – фильтруют воду. Делают это они не для того, чтобы вода стала чище, а чтобы отделить планктон, которым питаются.
Морские гребешки – это двустворчатые моллюски с очень красивой раковиной. Они обитают во всех океанах мира. У гребешков нет ни плавников, ни каких-либо иных конечностей, но в случае опасности они могут изменить привычке к малоподвижному образу жизни и довольно резво «убежать» от опасности.
Гребешок гигантский (лат. Crassedoma giganteum)
Как морским гребешкам удаётся быстро перемещаться?
Контрольный ответ
При опасности морские гребешки резко сжимают створки раковины и с силой выталкивают из неё воду. Такой водомётный движитель использует принцип реактивного движения. Чем с бóльшей скоростью выталкивается из раковины струя воды, тем бóльшую скорость приобретает сама раковина.
Кстати…
Принцип реактивного движения используют многие обитатели морей и океанов. Медузы, кальмары, осьминоги передвигаются на реактивной тяге. Скорость движения зависит от разных факторов, но самым значимым из них является скорость передачи нервного импульса от мозга к мышцам животного. От этого зависит, с какой частотой оно сможет выпускать реактивную струю. Например, кальмар на полный цикл «двигателя»: забор воды, прокачку её через тело и выталкивание – тратит доли секунды! Это позволяет ему достигать скорости 70 км/ч и выше.
ЗАДАЧА 9. КУБИК-ШАРИК…***
Игральную кость обычно называют кубиком. На каждой из 6 его граней нанесены точки от 1 до 6. Кубик бросают – и случайным образом выпадает 1 из 6 чисел. Но, оказывается, бывают игральные «кубики» в форме шара!
Круглый 6-сторонний «кубик» / Wikimedia, Clément Bucco-Lechat, CC BY-SA 3.0
Несмотря на форму, игральная кость останавливается почти сразу после броска. Почему?
Контрольный ответ
Внутри этого игрального кубика-шарика находится ещё один тяжёлый шарик, который может свободно перекатываться по внутренней поверхности.
Положение внутреннего шарика изменяет положение центра тяжести тела в целом. Если бы тяжёлый внутренний шарик был закреплён, игральная кость всегда останавливалась бы в одном положении, как кукла неваляшка. Но он может произвольно перекатываться внутри. Поэтому положение, в котором остановится такая игральная кость, непредсказуемо. Что и требуется по правилам игры в кости.
Хотите знать больше?
Видео по теме см. по запросу «Почему Неваляшка не падает и встаёт обратно?».
У многих игральных кубиков углы закруглены. Благодаря этому кубик катится почти как шар. При этом вероятность выпадения любого числа становится одинаковой, даже если бросающий намеренно выбирает определённое начальное положение кости и бросает её с целью, чтобы выпало задуманное число.