Бессис Давид
Путь к сути вещей: Как понять мир с помощью математики
Знак информационной продукции (Федеральный закон № 436-ФЗ от 29.12.2010 г.)
Переводчик: Екатерина Полякова
Редактор: Екатерина Новохатько
Главный редактор: Сергей Турко
Руководитель проекта: Елена Кунина
Арт-директор: Юрий Буга
Дизайн обложки: Денис Изотов
Корректоры: Мария Стимбирис, Анна Кондратова
Верстальщик: Александр Абрамов
Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.
Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.
© Éditions du Seuil, 2022 Published by arrangement with SAS Lester Literary Agency & Associates
© Издание на русском языке, перевод, оформление. ООО «Альпина Паблишер», 2024
* * *Но ведь на то и Мечтатель, живущий в каждом из нас ‹…› Прислушаться к Его тихим, настойчивым речам – значит отыскать путь к себе самому. Инерция духа – серьезное препятствие на этой дороге; чтобы преодолеть его, нужна решимость.
АЛЕКСАНДР ГРОТЕНДИК[1]Глава 1
Три тайны
Цель этой книги – изменить ваш взгляд на мир.
Ее отправная точка – мой собственный путь, долгое странствие, которое преобразило меня и наделило необычными способностями. Но оно было не только моим. Это всеобщее странствие, одно из самых древних и значительных, какие только могут быть. Его начала горстка людей в доисторические времена, но оно и поныне преобразует нашу цивилизацию, наши язык и мышление.
Сколько нас, чувствующих живой пульс математики внутри? Не знаю. Знаю только, что нас ничтожно мало, и мы еще не поведали миру о себе.
Считается, что путь математики непостижим. Изучающему ее надо быть причастным к элите, получить особый дар. Величайшие математики писали труды, чтобы опровергнуть это. Как мы увидим дальше, они добились таких высот обычными человеческими средствами, преодолевая сомнения и слабости, любопытство и воображение. Так они утверждали.
Никто не захотел им поверить. Возможно, они не смогли рассказать свою историю простыми словами. А может, недооценили силу мифа, который подвергали сомнению, одного из великих мифов человечества – об интеллекте.
Математика придает нашему миру форму. Она – инструмент власти и господства. Но для тех, кто живет ею, постижение математики – это прежде всего внутренний опыт, чувственный и духовный поиск.
Этот опыт мало похож на то, чему нас учат в школе. Отчасти это своего рода ясновидение, экстрасенсорное мышление. Отчасти это продолжение того загадочного процесса, который позволил нам в раннем детстве научиться говорить.
Понять математику – значит пройти тайной тропой, ведущей к гибкости нашего детского ума. Восстановить эту гибкость, приручить ее и уметь применять. Эта тропа интеллекта удивительно близка к той, которой мы следуем в повседневной жизни. Но доступ к ней спрятан, скрыт за нашими привычками, страхами и запретами.
И мне хотелось бы помочь вам отыскать эту тропу.
Нечто загадочное
«У меня нет особого таланта. Я просто страсть как любопытен».
В 15 лет я ненавидел эту фразу Эйнштейна. Я считал ее неискренней, это напоминало мне о тех случаях, когда топ-модели принимаются нам объяснять, что важнее всего внутренняя красота. Ну правда, кому охота слушать такую чушь?
И все же главная идея этой книги в том, что слова Эйнштейна надо принимать всерьез.
Кстати, поразительно, насколько нам трудно принять их всерьез. За Эйнштейном не водилась репутация законченного болвана или патологического лжеца. Спросите любого прохожего, и он скажет, что теория относительности – величайший вклад в человеческую мысль. Стало быть, то, что мог сказать и написать Эйнштейн, заведомо должно заслуживать внимания.
Но стоит ему намекнуть, что его уровень творческих способностей может быть досягаем для других, что это результат лишь немного другого взгляда на мир и так может каждый, – мы тут же решаем, что он не всерьез. Старикан сам не понимает, что несет. Или, хуже того, это ложная скромность, он так говорит, просто чтобы выпендриться.
Проблема в том, что, пока мы отказываемся принимать всерьез слова Эйнштейна, мы лишаем себя возможности продолжить разговор. А он заслуживает продолжения.
Фраза Эйнштейна объективно интригует, но мало о чем говорит. Если даже предположить, что она правдива, то что нам с ней дальше делать? Чем она может нам быть полезна? Без дальнейших уточнений, конкретных деталей или практических советов сложно понять, какие уроки следует из нее извлечь.
И все-таки невероятно, что никто не сообразил ответить ему: «Альберт, то, что ты сказал, безумно интересно, но хотелось бы узнать больше. Как насчет пояснения? Мы хотим узнать скрытые подробности, понять, как оно на самом деле у тебя работает. Заходи на чашечку кофе! Или, может, тебе больше по нраву долгие прогулки по лесу? Приходи и расскажи нам, у нас к тебе куча вопросов…»
Очевидно, что в первую очередь мы хотели бы задать самые глупые вопросы.
1. Откуда взялось любопытство Эйнштейна?
Я знаю мало людей, любопытных до такой степени, чтобы закрыться в комнате и размышлять о проблемах теоретической физики. Но кое-кого все же знаю, и все они говорят одно и то же: если им хочется закрыться в комнате наедине с проблемами теоретической физики, разумеется, ими движет научное честолюбие, но при этом – и в первую очередь – они получают истинное удовольствие.
И тогда вопрос начинает звучать так: как Эйнштейну удавалось находить удовольствие в занятиях физикой?
2. Как Эйнштейну удавалось не сдаваться?
Быть «страсть как любопытным» – значит иметь способность интересоваться чем-то с неослабевающим интересом, увлеченно, не пасуя перед сложностями. Эйнштейн явно нашел тайное средство, чтобы не отчаиваться там, где другие сдаются. И в чем же секрет?
Занимаясь математическими исследованиями высокого уровня, я понял одну важную вещь: когда запираешься в комнате наедине со сложной задачей, возникает ровно одно желание – сбежать оттуда.
Столкнуться с настоящей сложностью, достичь пределов своего ума, натыкаться на препятствия, месяцами барахтаться на месте, чувствовать себя слишком глупым, чтобы все это понять, и не иметь ни малейшего представления, как найти выход, – это же просто ужасно!
Эйнштейн нашел способ приручить свой страх и воспротивиться рефлекторному желанию сбежать. Что же это за способ?
3. Что именно происходило, когда Эйнштейн запирался в комнате наедине с проблемой?
Или, если говорить прямо, что Эйнштейн делал с проблемой? С какой стороны он к ней подходил? Как он действовал, чтобы с ней справиться?
Мы хотим знать, что на самом деле происходило у Эйнштейна в голове. Мы хотим знать, как он это делал по правде. Хотим узнать технику Эйнштейна, секретный фокус, который всегда срабатывал.
Мы знаем, что способность к интеллектуальному творчеству зависит не только от упорного труда. Мы знаем, что тут явно есть что-то еще, своего рода волшебные флюиды, что-то таинственное, что никогда не преподают в школе.
Если бы Эйнштейн нашел время преподать нам методику, как совершать великие научные открытия, его вклад в достижения человечества намного превзошел бы его работы по физике. Как говорится, лучше дать удочку, а не рыбу.
Эта дискуссия так и не состоялась. И никогда не состоится. Альберт Эйнштейн умер 18 апреля 1955 года в университетской больнице Принстона. Врачу, выполнявшему вскрытие, самому было так интересно раскрыть тайну Эйнштейна, что он изъял его мозг без согласия семьи и разрезал на тысячи пластинок.
Это мало чем ему помогло.
Метод
Но вообще, вопрос не только к Эйнштейну. Этому вопросу уже много веков. Он касается наших убеждений и заблуждений об интеллекте и интеллектуальном творении, а также ограничений, которые налагают на нас эти убеждения.
Самое трудное в понимании работ Эйнштейна – математический формализм. Он же создавал больше всего проблем и самому Эйнштейну. Как тот однажды признался школьнице, просившей у него совета: «Не переживай насчет своих проблем с математикой, уверяю тебя, у меня их намного больше».
Четыреста лет назад величайший математик своего времени рассказал о своей жизни в книге, ставшей известной на весь мир. С первых же страниц его посыл абсолютно ясен. Его можно вкратце изложить так: «Я не умнее других. Мне просто посчастливилось открыть волшебный метод, который позволил мне стать сильнее всех остальных. Позвольте мне объяснить, как я это сделал».
Тот же рефлекс, который не дает нам принять всерьез слова Эйнштейна, мешает нам услышать то, что пытается сказать этот математик (Рене Декарт), и поместить его книгу («Рассуждение о методе») на ту полку, где ей и следует быть – среди литературы о личностном развитии.
Сойдемся на том, что нет метода, который позволил бы каждому стать великим математиком, как и метода, который позволяет увеличить пенис или разбогатеть, работая из дома по два часа в день.
И неважно, что Декарт говорит нам прямо противоположное.
Три заблуждения
Мы еще вернемся к «Рассуждению о методе» в главе 14. Но, чтобы услышать, что нам пытаются сказать Эйнштейн и Декарт, сначала нужно избавиться от трех стереотипов о математике.
1. Чтобы заниматься математикой, надо мыслить логически.
2. Некоторые из нас от природы в ладах с числами, а некоторые от природы наделены хорошей геометрической интуицией. Увы, подавляющее большинство не понимает в математике ровным счетом ничего, и с этим надо смириться.
3. Великие математики родились с иной структурой мозга, чем у нас.
По первому стереотипу скажем сразу: нет, математики не мыслят логически. И никто не мыслит логически. Более того, мыслить логически в принципе невозможно. Логика вообще не предназначена для мышления. Она нужна для других вещей – мы еще обсудим для чего.
Второй стереотип – самый токсичный. Он ограничивает нас и делает фаталистами. Он сумел убедить добрую половину человечества, что математика – это чуждые и враждебные земли. Каждому из нас, включая самых одаренных, он полагает непреодолимый предел – уровень математической интуиции, который якобы «от природы» у каждого свой.
Третий стереотип – просто вариация на ту же тему: чтобы быть Эйнштейном или Декартом, надо таким родиться, им нельзя стать. А когда Эйнштейн и Декарт заявляют нам обратное, они просто над нами смеются.
Это представление, согласно которому мы якобы не способны стать успешными в математике, неверно, но исходит из фундаментальной истины: волшебная сила математиков не логика, а интуиция.
Как выстроить свою интуицию
Эйнштейн много говорил о важности интуиции в своих открытиях. «Я верю в интуицию и вдохновение», – сказал он и был при этом совершенно серьезен. Что же до математиков, они прекрасно знают, что есть две разные версии математики.
Официальная версия находится в учебниках – там она представлена логически и структурированно, на заумном языке, основанном на загадочных символах.
Скрытая версия находится в голове у математиков и называется математической интуицией. Она состоит из мысленных представлений и абстрактных ощущений, часто визуальных, которые кажутся математикам очевидными и приносят им удовольствие. Но когда речь заходит о том, чтобы поделиться этими очевидными вещами с остальным миром, математики оказываются в большом затруднении. То, что было таким очевидным, вдруг становится сложным.
Чтобы записать свои идеи, математики были вынуждены придумать тот самый заумный язык и загадочные символы, точно так же, как музыкантам пришлось придумать заумную нотную запись, чтобы передать свои сочинения. Только у музыкантов есть огромное практическое преимущество: им достаточно сыграть музыку, чтобы все сразу поняли, о чем идет речь, не занимаясь расшифровкой партитуры.
Большая проблема математиков в том, что у них такой возможности нет. В их голове идеи ярки, просты и богаты. На бумаге они становятся унылыми и невзрачными. Проклятие математиков – играть математику только в голове.
Если бы детей приобщали к музыке, заставляя расшифровывать партитуры Моцарта или Майкла Джексона и никогда ничего не давая слушать, музыка была бы таким же предметом всеобщей ненависти, как математика.
Интуиция – это смысл математики. Без интуиции математика не значит буквально ничего. И все же не нужно из этого заключать, что если вы ничего не понимаете в математике, то с этим уже ничего не поделать.
Ошибочно считать, что математическая интуиция – нечто статичное, непреодолимый рубеж. Ведь наше интуитивное представление о математических объектах не врожденное, не застывшее. Мы можем выстраивать его, выращивать день ото дня, если только следовать верной методике.
Математики прекрасно знают, что официальная математика – та, что в учебниках, – рассказывает не все. Они прекрасно знают, что истинная задача – суметь понять то, что в учебниках, суметь увидеть это и почувствовать.
Поэтому в повседневной жизни их занимает вопрос, как развивать свою интуицию, чтобы она становилась богаче. Интуиция математика – в гораздо большей степени, чем его публикации и официальные работы, – это его шедевр, творение всей жизни.
Это необыкновенное искусство видеть, чувствовать, действительно понимать и находить очевидным то, что 99.9999 %[2] человечества считает чудовищно абстрактным и в высшей степени непостижимым, – великое искусство математиков и их великая тайна. Лишь те, кто занимался этим, знают, куда может привести данное искусство.
Но как у них получается? Вот о чем эта книга.
Три секрета математиков
1. Занятия математикой – это физическая активность. Чтобы понять то, чего не понимаешь, нужно выполнять в уме скрытые действия – невидимые, но необходимые, – которые позволят обогатить интуицию и развить новые мысленные представления, более глубокие и мощные. Это деятельность, которая усиливает и обогащает нас. Учиться заниматься математикой – значит учиться пользоваться своим телом. Это то же самое, что и учиться ходить, плавать, танцевать или ездить на велосипеде. Эти действия не даны нам от рождения, но все мы способны им научиться.
2. Есть метод, позволяющий отлично разбираться в математике. Этот метод никогда не преподают в школе. Впрочем, он не похож ни на какую школьную методику и противоречит всем принципам традиционного образования. Он требует не усилий, а простоты. Его можно сравнить с техникой скалолазания, боевым искусством, своего рода йогой или медитацией. Он учит нас преодолевать страхи, обуздывать позыв к избеганию неизвестного, учит находить удовольствие в столкновении с противоречием. Это способ перепрограммировать нашу интуицию. А значит, это не просто метод, помогающий отлично разбираться в математике, – это метод, позволяющий стать очень умным.
3. Мозг великих математиков работает так же, как и наш. Как и с другими видами физической активности, естественная склонность к математике, конечно, распределена между людьми неравномерно. Но это биологическое неравенство играет все же не такую важную роль.
Математические навыки распределены так чудовищно неравномерно, что биологическая гипотеза не выдерживает критики. Несомненно, некоторым людям генетически присуще более эффективное, быстрое и мощное взаимодействие нейронов, которое – почему бы и нет? – может сделать их, скажем, в два раза способнее к математике. Но владеть правильным методом, развить правильные умственные рефлексы, занять правильную психологическую позицию – значит стать способнее к математике в миллиард раз.
Есть другое, намного более простое и правдоподобное объяснение, почему существует столь вопиющее неравенство в способностях к математике: нас никогда не учат методу, как начать отлично разбираться в математике. Все отдается на волю случая. Каждому приходится заново, самостоятельно и наудачу открывать крупицы методики. А чаще всего никому не удается ничего открыть, потому что некоторые ключевые моменты метода неожиданны и идут вразрез с интуицией. Пройти мимо них очень легко.
Мозг великих математиков работает так же, как и наш. Но их личная история, их способ выстроить взаимоотношения с миром дали им возможность познакомиться с этим методом с детства. Они приобщились к нему самостоятельно, не имея такого намерения и не зная, что они делают. Просто так случайно повернулась жизнь.
Устная традиция
Многие ученые-математики признавались, что ощущали себя самоучками. Если вспомнить, какое место занимает математика в школьном образовании, такое ощущение выглядит парадоксальным.
Действительно, они не самоучки в том смысле, что школа научила их массе вещей. Но они в самом деле самоучки в том смысле, что самым важным вещам учились не в школе.
Я сам один из таких парадоксальных самоучек. В школе я научился основам математики в общепринятом смысле. И в то же время я открыл для себя зачатки тайной математики, хотя некому было преподать их мне.
Очень долго я не понимал связи между невидимыми действиями, которые я производил у себя в голове, – этой привычкой весьма своеобразно использовать воображение – и моими способностями к математике.
Я поделюсь упражнениями для развития воображения, которыми стал заниматься с детства. Вначале это были лишь очень простые и невинные игры. Например, я развлекался, ходя по дому с закрытыми глазами и стараясь запомнить расположение мебели. Казалось бы, никакой связи с тем, чему меня учили в школе?
Когда я только начал, у меня не особо получалось. Я то и дело врезался в стены. Я и не подозревал, что эта игра, как и другие, всё более сложные, позволит мне развить необыкновенно сильную геометрическую интуицию – при той же стартовой позиции, что и у всех.
Эта интуиция стала тайным оружием моей математической карьеры. Я видел то, что никто никогда не видел, и мог решать задачи, которые никто не мог решить.
Поскольку я чувствовал, как математические силы растут во мне с годами, я твердо знаю, что они не врожденные. Я также знаю, что мыслительные привычки, которые позволили им возникнуть, никогда не преподавались мне в школе. В первую очередь они – плод случая и удачи.
Лишь много позже, общаясь с другими математиками и читая свидетельства знаменитых ученых, я обнаружил, что мой опыт ничуть не уникален.
Параллельно с нормативным знанием, содержащимся в учебниках по математике, секрет математиков живет в устной традиции, которая передается и обогащается из поколения в поколение. Она рассказывает о том, о чем никто не осмеливается писать в книгах, потому что это выглядит несерьезно, потому что это уже не наука и потому что это как-то чересчур похоже на курсы личностного развития.
Эта история заслуживает, чтобы ее рассказали простыми и доступными словами. Она касается нас всех, двоечников по математике или гениев, молодых или старых, гуманитариев или технарей. Она говорит о наших сильных и слабых сторонах, о наших скрытых талантах и о том, что мы способны совершить. О человеческом разуме, сознании и языке. Это история обо всех нас.
Математическое странствие – это внутреннее странствие, тайное и безмолвное. Но это наш общий путь. Его истинная цель – человек.
В частных разговорах, когда математиков никто не слышит, они наконец могут рассказать друг другу все как есть.
Да, математика внушает страх. Да, она кажется непостижимой. Да, у многих создается впечатление, что они не достигнут успеха. И все же способ есть.
Глава 2
С подходящего конца ложки
Моему сыну Араму год, и он учится есть ложкой. Не буду лукавить – это катастрофа. Через две минуты пюре у него даже в ушах.
Я пытаюсь ему помочь. Наполняю ложку и протягиваю ему. Но он берет ее не с того конца, где ручка, – а с того, где пюре. Я объясняю, что брать нужно с другого конца, с ручки, и показываю, как надо. Но он упорно тянет руку к пюре. В конце концов, это не лишено логики, потому что его интересует именно пюре. Только вот это не так делается.
И все же я совершенно за него не беспокоюсь. У него все получится. Все в конце концов понимают, что ложку нужно держать с нужного конца. Я никогда ни от кого не слышал: «Ложки – это не мое. Так и не понял, зачем это. Меня это быстро выбесило, и я бросил».
У человечества с ложкой прекрасные отношения. Никто не ненавидит ложки. Ложки никого не ненавидят. Это одно из первых настоящих орудий, с которыми мы встречаемся, и они будут сопровождать нас всю жизнь.
Сначала ложка загадочна и непредсказуема. Потом становится привычной. Очень скоро мы начинаем ею пользоваться не задумываясь, как собственной рукой. И в каком-то смысле она и правда как рука: мозг интериоризирует ложку, ее назначение и возможности. Она становится продолжением нашего тела.
Когда умеешь есть ложкой, кажется, что это просто. Когда не умеешь, кажется, что это сложно. Мы так хорошо научились обращаться с ложкой, что забыли, что этому пришлось учиться. Мы забыли, что это было непросто.
Сложность этого действия вновь становится очевидной, когда мы видим малыша, у которого не получается. Этот жест требует отменной координации движений. Просто взять ложку и правильно держать ее под правильным углом – уже очень тонкое искусство. Не говоря о том, что правильный способ держать ложку зависит от того, что мы хотим ею съесть.
Вот уже 50 лет, как мы умеем отправлять ракеты на Луну. Но мы только-только начали учиться программировать роботов, способных зачерпнуть пюре ложкой. О киви и говорить не будем – это намного сложнее пюре.
Кое-что посерьезнее
Ложка – это только начало. Дальше уже идут серьезные вещи. Мы учимся надевать ботинки и завязывать шнурки. Чистить зубы и стричь ногти. Кататься на велосипеде и на роликах. Чистить лук и варить кофе. Собирать конструкторы Playmobil и пришивать пуговицы. Водить машину и чистить кофеварку от накипи. Часто бывает немного сложно в начале, потом становится проще.
Точно так же, как ложка или велосипед, наши орудия в конце концов становятся продолжением нас самих. Мы пользуемся ими не задумываясь. Они преобразуют нас. Дополняют нас. Делают нас теми, кто мы есть. Без наших орудий мы уже мало что из себя представляем.
Самое трудное – научиться говорить. Неслыханный, необычайно долгий, ужасающе тяжелый труд. В полтора года мы практически не можем пролепетать ничего внятного. И все же тренируемся весь день напролет.
Есть много поводов отчаяться, и все же мы не перестаем. Никто не думает: «Разговаривать – это не мое. Оно того не стоит. Слишком уж тяжело дается». Никто из родителей не говорит: «Она такая милая с соской, заставлять ее так трудиться – сердце разрывается. В общем, мы решили с ней не разговаривать».
Речь не инструмент по выбору. Это не занятие, доступное лишь избранным, – богатым или гениям.
Если нужно обозначить дату, с которой началось человечество, то это день, когда наши предки решили приобщить всех к речи. Задолго до десяти заповедей мы выбрали себе закон: «Научи разговаривать детей своих».
Радикальный успех
Ближе к нашему времени, около полутора веков назад, было принято еще одно основополагающее решение: учить всех чтению и письму.
Это решение настолько фундаментальное, что уже трудно представить, как вообще выглядел бы наш мир, если бы оно не было принято. Если бы, как до этого времени, доступ к чтению был лишь у крошечной доли населения.