banner banner banner
Ошибки инноваторов, и как их избежать. ТРИЗ для чайников – 5, второе издание
Ошибки инноваторов, и как их избежать. ТРИЗ для чайников – 5, второе издание
Оценить:
 Рейтинг: 0

Ошибки инноваторов, и как их избежать. ТРИЗ для чайников – 5, второе издание

Ошибки инноваторов, и как их избежать. ТРИЗ для чайников – 5, второе издание
Лев Хатевич Певзнер

Это дополненное второе издание книги «ТРИЗ для чайников 5», посвященной одному из важных инструментов ТРИЗ – анализу типовых ошибок при развитии технических система. Для упрощения освоения материала в книге приведено большое количество примеров, иллюстрирующих материал.Книга адресована широкому кругу инженеров, менеджерам по инновациям и инвестициям.

Ошибки инноваторов, и как их избежать

ТРИЗ для чайников – 5, второе издание

Лев Хатевич Певзнер

© Лев Хатевич Певзнер, 2024

ISBN 978-5-0064-6000-3 (т. 5)

ISBN 978-5-4493-8108-8

Создано в интеллектуальной издательской системе Ridero

От автора

Известна история, которую принято называть «ошибкой выжившего». Во время Второй мировой войны командование американских и британских ВВС поручило математику Абрахаму Вальду выяснить, какие части фюзеляжа самолета нужно защитить дополнительной броней. Вальд изучал самолеты, возвращавшиеся с боевых вылетов, отмечая места попаданий. В результате, он рекомендовал установить дополнительную защиту на те участки (центральную и заднюю части фюзеляжа), где количество пробоин было минимальным. Почему? Да очень просто – попадания снарядов в самолет в силу статистики должны были распределяться равномерно по всему корпусу самолета. Но те попадания, после которых самолеты возвращались, и которые Вальд видел, не были критичными. В то же время самолеты, получившие повреждения в других частях корпуса, вероятно, не возвращались, так как повреждения в этих местах были фатальными. Таким образом, Вальд рекомендовал укрепить именно те части самолета, где было меньше всего повреждений на вернувшихся самолетах.

Рисунок 1. Схема Вальда

Логика была следующей: если самолеты, возвращающиеся на базу, не имели повреждений в определенных частях корпуса, это могло означать, что самолеты, получившие пробоины в этих местах, не выживали. Следовательно, именно эти места нуждались в дополнительной защите.

Эта история прекрасно иллюстрирует концепцию «ошибки выжившего» – логической ошибки, заключающейся в том, что выводы делаются на основе данных от тех, кто «выжил», не учитывая тех, кто не «выжил». В данном случае, это привело бы к неправильному распределению брони на самолетах.

Почему-то в истории техники принято изучать рассказы об успешных изобретателях и инженерах. Однако, таких людей единицы, в то время как тех, кто потратил свою жизнь и сбережения, но не добился успеха – десятки и сотни тысяч. И если мы хотим добиться успеха, надо изучать их истории и понимать причины их провалов.

Почему-то в истории техники принято изучать рассказы об успешных изобретателях и инженерах. Однако, таких людей единицы, в то время как тех, кто потратил свою жизнь и сбережения, но не добился успеха – десятки и сотни тысяч. И если мы хотим добиться успеха, надо изучать их истории и понимать причины их провалов.

Изучать надо не мифы и легенды об успехах (в большинстве своем придуманные победителями), а огромный фонд ошибок и провалов, которые не позволили добиться успеха. Это сложно, об этом мало пишут, но именно этот анализ позволит успешно работать.

Я хочу выразить благодарность Якову Кацману, предоставившему ряд великолепных примеров из своего практического опыта и Борису Злотину за помощь в работе.

ВВЕДЕНИЕ

В ТРИЗ хорошо исследованы законы развития технических систем, а также основные линии и тенденции их эволюции. Следуя этим законам, можно достаточно быстро и эффективно развивать технические системы. Тем не менее, на практике мы постоянно сталкиваемся с ситуациями, когда развитие технических систем тормозится, а иногда и полностью останавливается, что приводит к краху бизнесов, основанные на них. Причины могут быть как объективные, так и субъективные. Ведь развитием системы занимаются не только ученые и инженеры, но и менеджеры-организаторы производства. И нередко их взгляды и стремления отличаются от оценок инженеров, и они навязывают инженерам свои «концепции» развития техники, которые заводят развитие в тупик. Особенно ярко это проявляется в тоталитарных режимах, когда лидеры бюрократии приказывают инженерам и конструкторам что и как делать (яркие примеры – Гитлер в Германии, Сталин в СССР). В таких случаях техника начинает развиваться по кривым путям, существенно уклоняясь от магистрального пути. Со временем все возвращается на круги своя, но теряется время и огромные ресурсы. Иногда ошибки стоят жизни целым компаниям и коллективам.

Рассматривая типовые ошибки, мы будем обращать внимание на причины их возникновения – как объективные, которых трудно избежать (но потери можно снизить), так и субъективные, связанные с психологической инерцией разработчика, ошибками менеджера-организатора. Последних можно избежать.

Основы методики исследования типовых ошибок при развитии технических систем заложил мастер ТРИЗ Борис Злотин около 30 лет назад. Он описал наиболее часто встречающиеся ошибки и их причины для разных этапов развития технической системы. Законы развития технических систем, разработанные к настоящему времени, в значительной степени изложены в книгах [1,2]. Сложность, многогранность и диалектичность процесса развития техники не позволили провести полное и законченное исследование по причинам возникновения ошибок в развитии технических систем.

Это второе издание книги, которое я существенно расширил и дополнил. Как и в первом издании, я постарался систематизировать и изложить материалы по типовых ошибкам в развитии технических систем, которые удалось собрать к настоящему времени.

ГЛАВА 1. Закон S-образного развития технической системы

Все технические системы развиваются по S-образной кривой. Положение технической системы на S-тесно связано ее финансированием, типом лидера, отношениями в коллективе и многими другими аспектами. Понимание места системы на S-кривой позволяет грамотно управлять ее развитием, инвестированием средств в ее развитие, модернизацией управленческой и производственной структуры, а также прогнозировать перспективы развития системы и строить планы. Мы не будем глубоко изучать закон S-образного развития в этой книге, но кратко опишем его, чтобы иметь базу, для отсчета отклонений и ошибок в развитии.

1.1. Как появляются новые технические системы

Известны два основных пути создания принципиально новых (пионерных, как их называл Г. Альтшуллер) технических систем:

– создание технической системы на основе открытия,

– создание новой технической системы путем гибридизации известных технических систем.

Рассмотрим эти два пути.

1.1.1. Изобретения, созданные на основе открытия

Под такими изобретениями понимается создание технических систем и технологий, которые:

– реализуют новые функции, которые ранее не существовали; это позволяет создать и удовлетворять новые потребности, которых ранее не было[1 - Отметим, что грамотная методика поиска создания пионерных систем в ТРИЗ не разработана, хотя ее использование могло бы существенно расширить возможности изобретателей и бизнес-консультантов. В настоящее время существуют только общие подходы, такие как закон перехода на микроуровень или тенденция удешевления.];

или

– реализуют известные функции на основе нового принципа действия, что позволяет удовлетворять известные потребности на качественно более высоком уровне.

Создание таких систем всегда является основой для появления новых направлений в технике, и даже новых отраслей промышленности. Зачастую они вызывают существенные изменения в обществе. Такие изобретения всегда открывают новые S-кривые.

Пример

Рентгеноскопия

Главное открытие в своей жизни Конрад Рентген сделал 8 ноября 1895 года. Работая в своей лаборатории, он заметил, что после включения тока в катодной трубке начинает светиться покрытый слоем платиноцианистого бария бумажный экран. Это происходило вопреки здравому смыслу, поскольку трубка была полностью закрыта плотным черным картоном, и свет не мог проходить через него. Когда рентген выключил ток, свечение прекратилось, а при включении тока экран снова засветился! Он сделал вывод, что в трубке возникают икс-лучи, способные проходить через плотный материал

Рисунок 2. Первый рентгеновский снимок – рука Альберта фон Келликера, 21.01.1896 года

и вызывать флуоресценцию определенных веществ. В зависимости от вида материала и его толщины преграда пропускала больше или меньше луче, что позволяло анализировать структуру различных объектов. Установка, разработанная Рентгеном, выполняла совершенно новую функцию – неразрушающий анализ структуры непрозрачного объекта.

Пример

До появления LED-светильников функция освещения выполнялась лампами накаливания, путем преобразования электричества в световое излучение через нагрев вольфрамовой спирали. Использование светодиодов для освещения представляет собой новый физический принцип освещения, в разы повышающий КПД использования электроэнергии.

Это привело к развитию не только новых систем освещения, но и породило новые направления в других отраслях, например, новые способы выращивания овощей в многоуровневых теплицах.

Рисунок 3. LED-светильник с множеством элементов; один из элементов

Рисунок 4. многоярусная теплица

В рассмотренных примерах:

– Рентгеновский аппарат не мог бы быть создан без открытия Рентгеном икс-лучей (за которое он, кстати, получил Нобелевскую премию по физике за 1901 год и право на дворянский титул!).

– Появление LED-светильников стало возможным только после открытия в 1960-1970-х годах технологии получения желтых, белых и синих светодиодов.

1.1.2. Создание новой технической системы путем гибридизации известных систем