Книга Финансово-экономические расчеты в Excel - читать онлайн бесплатно, автор Евгений Васильевич Ширшов
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
Финансово-экономические расчеты в Excel
Финансово-экономические расчеты в Excel
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

Финансово-экономические расчеты в Excel

Евгений Ширшов

Финансово-экономические расчеты в Excel

Введение

Информационно-коммуникационные технологии прочно вошли во все сферы жизнедеятельности человека, способствуя реализации инновационных видов обмена информацией и развитию наукоемкого производства. В современных социально-экономических условиях студент, как будущий специалист в области экономики, финансов, менеджмента должен уверенно применять прикладные программы в качестве средства для проведения анализа и исследования предметной области с целью получения объективной оценки финансово-экономической деятельности, осуществлять обработку результатов достоверного прогнозирования, планирования и принятия на их основе научно-обоснованного решения, способствующего росту финансово-экономического благополучия и развития бизнеса.

Одним из таких прикладных программных средств, которое может быть применено при решении широкого класса задач финансово-экономического характера является табличный процессор Microsoft Excel. Важнейшей особенностью, делающей его незаменимым для выполнения финансово-экономических расчетов, анализа и управления бизнесом, является возможность использования достаточно большой библиотеки функций, встроенной в структуру электронной таблицы.

Учебное пособие в доступной форме знакомит с возможностями проведения финансово-экономических расчетов на компьютере при помощи табличного процессора Excel 2013, являющегося составной частью популярного пакета Microsoft Office 2013.

На примерах продемонстрирована технология использования различных средств Excel для финансового анализа инвестиций и расчетов по ценным бумагам. Показана специфика использования финансовых функций Excel для проведения финансовых расчетов и анализа данных.

Целью настоящего учебного пособия является формирование и закрепление теоретических знаний посредством решения практико-ориентированных задач, заимствованных из области экономической и финансовой деятельности. Первое издание вышло в свет в 1999 году, после чего пособие было качественно переработано и прошло практическую апробацию (2-е изд. – 2012 г.) непосредственно при организации учебного процесса в вузе на протяжении последних пятнадцати лет.

Учебное пособие содержит большое количество практических примеров и задач, позволяющих автоматизировать финансово-экономические расчеты на компьютере, а также задания для выполнения контрольных и лабораторных работ, самостоятельных расчетов и ответы к ним.

1. Модели и методы финансово – экономических расчетов

1.1. Общие положения

Финансовые функции Excel предназначены для вычисления базовых величин, необходимых при проведении сложных финансовых расчетов. Их используют вместо финансовых уравнений. Они работают быстрее, чем введенные формулы, и с меньшей вероятностью ошибок.

Количественный финансовый анализ предполагает применение унифицированных моделей и методов расчета финансовых показателей.

В этом контексте, Microsoft Excel предоставляет широкий спектр функций для финансово-экономических расчетов: от нахождения выплат по процентам, реализации задач дисконтирования, посторения моделей расчета амортизации оборудования, анализа показателей ценных бумаг, регулярных выплат по займу до оценки эффективности капитальных вложений и инвестиций, моделирования финансово-экономических аспектов деятельности предприятия, фирмы и т.п.


Рис. 1. Обобщенная классификация финансовых функций


Условно методы финансовой математики делятся на две категории: базовые и прикладные. К базовым методам и моделям относятся:

– простые и сложные проценты. Простые проценты используются, как правило, в краткосрочных финансово-экономических операциях (продолжительностью до года). Базой для исчисления процентов за каждый период в этом случае служит исходная сумма сделки. Сложные проценты применяются в среднесрочных и долгосрочных финансовых операциях (более одного года), но могут применяться и в краткосрочных, если это вызвано объективной необходимостью (риски, высокий уровень инфляции и т.п.). При этом база для исчисления процентов за период включает в себя как исходную сумму сделки, так и сумму уже накопленных к этому времени процентов;

– расчет последовательностей (потоков) платежей. При проведении большинства финансовых операций возникают чередующиеся в течение ограниченного или неограниченного промежутка времени поступления и выплаты денежных средств. Поток состоит из отдельных элементов потока – платежей. Поступление денежных средств считают положительными платежами, а выплаты – отрицательными. Денежные потоки делятся:

– по распределению во времени: регулярные (периодические) и нерегулярные;

– по величине элементов: на постоянные и переменные.

Наращенная сумма может представлять собой общую сумму накопленной задолженности к концу срока, итоговый объем инвестиций, накопленный денежный резерв и т.д.

Современная стоимость характеризует приведенные к началу осуществления проекта затраты, капитализированный доход или чистую приведенную прибыль от реализации проекта и т.д.

К прикладным методам финансовых расчетов относятся:

– планирование и оценка эффективности финансово-кредитных операций;

– расчет страховых аннуитетов;

– планирование погашения долгосрочной задолженности;

– планирование погашения ипотечных ссуд и потребительских кредитов;

– финансовые расчеты по ценным бумагам;

– лизинговые, факторинговые и форфейтинговые банковские операции;

– планирование и анализ инвестиционных проектов и др.

Особенностью всех финансовых расчетов является временная ценность денег, то есть принцип неравноценности денег, относящихся к разным моментам времени. Деньги – это мера стоимости товаров и услуг. Предполагается, что полученная сегодня сумма обладает большей ценностью, чем ее эквивалент, полученный в будущем, то есть будущие поступления менее ценны, чем современные. Неравноценность одинаковых по абсолютной величине сумм связана, прежде всего, с тем, что имеющиеся сегодня деньги могут быть инвестированы и принести доход в будущем.

Основными понятиями финансовых методов расчета являются:

– процент – абсолютная величина дохода от предоставления денег в долг в любой его форме;

– процентная ставка – относительная величина дохода за фиксированный интервал времени, измеряемая в процентах или в виде дроби, которая используется в качестве измерителя уровня (нормы) доходности задачу – нахождение величины на заданный момент времени по ее известному или предполагаемому значению в будущем.

Ввиду ограниченного объема данного учебного пособия, теоретические вопросы описания методов, расчетов, способов, определений, а также и другие характеристики рекомендуется изучать в специальной литературе [7].

1.2. Специфика использования финансовых функций Excel

Финансовые функции Excel предназначены для вычисления базовых величин, необходимых при проведении сложных финансовых расчетов. Методика изучения и использования финансовых функций Excel требует соблюдения определенной технологии.

1. На рабочем листе в отдельных ячейках осуществляется подготовказначений основных аргументов функции.

2. Для расчета результата финансовой функции Excel курсор устанавливается в новую ячейку для ввода формулы, использующей встроенную финансовую функцию; если финансовая функция вызывается в продолжение ввода другой формулы, данный пункт опускается.

3. Осуществляется добавление финансовой функции на рабочий листс помощью команды Формулы, из библиотеки функций активизацией опции Финансовые функции или одновременным нажатием клавиш Shift-F3, а также нажатием одноименной кнопки fx Вставить функцию на панели инструментов Стандартная.

4. Выполняется выбор категории Финансовые (рис. 2). В списке Категория содержится полный перечень доступных функций выбранной категории. Поиск функции осуществляется путем последовательного просмотра списка. Для выбора функции курсор устанавливается на имя функции. В нижней части окна приведен краткий синтаксис и справка о назначении выбираемой функции. Кнопка Справка по этой функции вызывает экран справки для встроенной функции, на которой установлен курсор. Кнопка Отмена прекращает работу опции Вставка функции. При нажатии на кнопку ОК осуществляется переход к работе с диалоговым окном выбранной функции.


Рис. 2. Экран вызова опции Вставка функции


В списке Категория содержится полный перечень доступных функций выбранной категории. Поиск функции осуществляется путем последовательного просмотра списка. Для выбора функции курсор устанавливается на имя функции. В нижней части окна приведен краткий синтаксис и справка о назначении выбираемой функции. Кнопка Справка по этой функции вызывает экран справки для встроенной функции, на которой установлен курсор. Кнопка Отмена прекращает работу опции Вставка функции. При нажатии на кнопку ОК осуществляется переход к работе с диалоговым окном выбранной функции.

5. Выполняется выбор в списке требуемой финансовой функции, в результате выбора появляется диалоговое окно для ввода аргументов (рис. 2). Для каждой финансовой функции существует регламентированный по составу и формату значений перечень аргументов.

6. В поля ввода диалогового окна можно вводить как ссылки на адреса ячеек, содержащих собственно значения аргументов, так и сами значения аргументов.

7. Если аргумент является результатом расчета другой встроеннойфункции Excel, возможно организовать вычисление вложенной встроенной функции путем вызова опции Вставка функции одноименной кнопкой, расположенной перед полем ввода аргумента.

8. Возможна работа с экраном справки, поясняющей назначение иправила задания аргументов функции; вызов справки осуществляется путем нажатия кнопки Справка по этой функции.

9. Для отказа от работы со встроенной функцией нажимается кнопка Отмена.

10. Завершение ввода аргументов и запуск расчета значения встроенной функции выполняется нажатием кнопки ОК.

При необходимости корректировки значений аргументов функции (изменения ссылок, постоянных значений и т.п.) необходимо установить курсор в ячейку, содержащую формулу, и вызвать кнопку fx Вставить функцию. При этом появляется окно для редактирования (рис. 3).


Рис.3. Диалоговое окно ввода аргументов функции


Возможен вариант непосредственного ввода формулы, содержащей имена и параметры встроенных финансовых функций.

Формула начинается со знака =. Далее следует имя функции, а в круглых скобках указываются её аргументы в последовательности, соответствующей синтаксису функции. В качестве разделителя аргументов используется выбранный при настройке Windows разделитель, обычно это точка с запятой или запятая.

Безусловно, функцию можно ввести, набрав ее прямо в ячейке. Однако Microsoft Excel предоставляет на стандартной панели инструментов кнопку fx Вставить функцию (см. рис. 4).


Рис. 4. Стандартная панель инструментов (кнопка Вставитьфункцию)


Специфика задания значений аргументов финансовых функций заключается в следующем:

– все аргументы, означающие расходы денежных средств, представляются отрицательными числами (например, ежегодные платежи), а аргументы, означающие поступления, представляются положительными числами (например, дивиденды);

– все даты как аргументы функции имеют числовой формат представления, например, дата 1 января 1995 года представлена числом 34700. Если значение аргумента типа дата берется из ячейки, то дата в ячейке может быть записана в обычном виде;

– для аргументов типа логический возможен непосредственный ввод констант типа ИСТИНА или ЛОЖЬ, либо использование встроенных функций аналогичного названия категории Логические

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Вы ознакомились с фрагментом книги.

Для бесплатного чтения открыта только часть текста.

Приобретайте полный текст книги у нашего партнера:

Полная версия книги