Юрий Малов
Хроническая сердечная недостаточность (патогенез, клиника, диагностика, лечение)
УСЛОВНЫЕ СОКРАЩЕНИЯ
А-II – ангиотензин II
АВ – атриовентрикулярный
АГ – артериальная гипертензия
АД – артериальное давление
АДГ – антидиуретический гормон
АК – антагонист кальция
АПФ – ангиотензинпревращающий фермент
АРА – антагонист рецепторов ангиотензина II
АТ1 – ангиотензиновый рецептор 1-го типа
АТ2 – ангиотензиновый рецептор 2-го типа
АТФ – аденозинтрифосфорная кислота
АЧТВ – активированное частичное тромбопластиновое время
БАБ – β-адреноблокатор
БРА – блокатор рецепторов ангиотензина
ВИВР – время изоволюмического расслабления
ВНОК – Всероссийское научное общество кардиологов
ВОЗ – Всемирная организация здравоохранения
ГБ – гипертоническая болезнь
ГКМП – гипертрофическая кардиомиопатия
ДАД – диастолическое артериальное давление
ДГК – докозагексаеновая кислота
ДКМП – дилатационная кардиомиопатия
ДНК – дезоксирибонуклеиновая кислота
ДТ – время замедленного раннего диастолического наполнения
ЕД – единица действия
ЗП – золотая пропорция
ЗС – золотое сечение
ИАПФ – ингибитор ангиотензинпревращающего фермента
ИБС – ишемическая болезнь сердца
ИКГ – изолированная клиническая гипертензия
ИМ – инфаркт миокарда
ИММ – индекс массы миокарда
ИМТ – индекс массы тела
КДО – конечный диастолический объем
КДР – конечный диастолический размер
КСО – конечный систолический объем
КСР – конечный систолический размер
ЛЖ – левый желудочек
ЛП – левое предсердие
ЛПД – левого предсердия диаметр
МАГ – «маскированная» артериальная гипертензия
МЕТ – метаболический эквивалент потребления кислорода
ММ – масса миокарда
МНО – международное нормализационное отношение
МНУП – мозговой натрийуретический пептид
МОК – минутный объем кровообращения
НАД – никотинамиддинуклеотид
НПВП – нестероидный противовоспалительный препарат
НУП – натрийуретический пептид
НЭП – нейроэндопептидаза
ОПСС – общее периферическое сопротивление сосудов
ОСН – острая сердечная недостаточность
ОССН – Общество специалистов по сердечной недостаточности
ОТМ – относительная толщина миокарда
ПАГ – преходящая артериальная гипертензия
ПАД – пульсовое артериальное давление
ПНУП – предсердный натрийуретический пептид
РААС – ренин-ангиотензин-альдостероновая система
РНК – рибонуклеиновая кислота
САД – систолическое артериальное давление
САС – симпато-адреналовая система
СВ – сердечный выброс
СДО – систоло-диастолическое отношение
СН – сердечная недостаточность
СО – систолическое отношение
СП – систолический показатель
ССФ – сохраненная систолическая функция
СФВ – сохраненная фракция выброса
ТЗС – толщина задней стенки
ТМЖП – толщина межжелудочковой перегородки
ТДИ – тканевое допплеровское исследование
УЗИ – ультразвуковое исследование
УО – ударный объем
ФВ – фракция выброса
ФДЭ – фосфодиэстераза
ФК – функциональный класс
ФНО-α – фактор некроза опухоли α
ХНК – хроническая недостаточность кровообращения
ХОБЛ – хроническая обструктивная болезнь легких
ХСН – хроническая сердечная недостаточность
цАМФ – циклический аденозинмонофосфат
цГМФ – циклический гуанозинмонофосфат
ЦНС – центральная нервная система
ЦНУП – C-концевой натрийуретический пептид
ЧСС – частота сердечных сокращений
ЭКГ – электрокардиография (электрокардиограмма)
ЭПК – эйкозапентаеновая кислота
ЭТ – эндотелин
ЭхоКГ – эхокардиография
ЭЭГ – электроэнцефалограмма
АСС/АНА – American College of Cardiology / American Heart Association (Американская кардиологическая коллегия / Американская ассоциация кардиологов)
BNP – brain natriuretic peptide (мозговой натрийуретический пептид)
Fab – антигенсвязывающий фрагмент антитела
NYHA – New York Heart Association (Нью-Йоркская ассоциация кардиологов)
NT-proBNP – N-terminal proBNP (N-концевой полипептид предшественника мозгового натрийуретического пептида)
Pa СО2 – парциальное давление СО2
PgE2 – простагландин E2
PgI2 – простациклин (простагландин I2)
Va – максимальная скорость трансмитрального кровотока во время систолы предсердий
Ve – максимальная скорость раннего трансмитрального кровотока
ПРЕДИСЛОВИЕ
Сердечная недостаточность – клинический синдром, развивающийся при таких заболеваниях сердечно-сосудистой системы и других органов, при которых имеет место поражение сердца. В последние годы достигнуты определенные успехи в изучении этой проблемы. Внедрены новые высокоинформативные неинвазивные методы исследования, позволяющие определять показатели функционального состояния сердца; получены убедительные данные о механизмах его нейрогуморальной регуляции; интенсивно изучаются на молекулярном уровне процессы сокращения и расслабления миокарда в норме и при сердечной недостаточности (СН); сделан важный шаг в терапии больных с СН. Однако сердечная недостаточность остается не до конца изученной проблемой, целый ряд вопросов нуждается в уточнении.
В первую очередь это касается определения хронической сердечной недостаточности (ХСН). С одной стороны, ХСН рассматривают как клинический синдром, свойственный течению ряда заболеваний и характеризующийся комплексом симптомов (одышка, повышенная утомляемость, периферические отеки), которые связаны с неадекватной перфузией органов и тканей в покое или при нагрузке, часто с задержкой жидкости в организме, осложняющий течение основного заболевания. С другой стороны, ХСН описывают как нозологическую форму, болезнь. С тем и другим трудно полностью согласиться.
Если рассматривать ХСН как осложнение, то следовало бы ожидать новых признаков, не свойственных тому или иному заболеванию, протекающему с данным синдромом. СН разной степени выраженности, зависящей от характера и величины поражения структур сердца, наблюдается практически у всех больных с сердечно-сосудистой патологией, и притом на ранних стадиях ее развития. Скорее всего, этот синдром является проявлением данных заболеваний, а не их осложнением.
Ряд исследователей считает, что ХСН является завершающей стадией хронических заболеваний сердца, более того, завершающим этапом сердечно-сосудистого континуума. При этом речь идет только о довольно выраженных функциональных нарушениях деятельности сердца и полностью игнорируются начальные проявления ХСН. Хотя, согласно принятым классификациям – Американской кардиологической коллегии и Американской ассоциации кардиологов (АСС/АНА), Нью-Йоркской ассоциации кардиологов (NYHA) и отечественной, – ХСН появляется в самом начале заболевания.
Внимание к более выраженным формам ХСН не случайно. Во-первых, их выявление указывает на тяжелое течение основного заболевания, во-вторых – на слабо разработанные методы ранней диагностики сердечной недостаточности, в частности систолической недостаточности сердца. Диагностика последней, основанная на определении фракции выброса (ФВ), не может считаться ранней, так как почти у половины больных с выраженной ХСН этот показатель оказывается в пределах нормы.
Появление надежных методов диагностики ХСН на ранних стадиях ее развития облегчило бы выявление данного синдрома. Не менее важной следует считать разработку простых, доступных для практического здравоохранения методов исследования ХСН.
Решение данной проблемы должно строиться на основе системного подхода к изучению состояния больных. Системный подход – новое направление в методологии научного познания, в основе которого лежит исследование объектов как систем. Он позволяет выявить законы оптимальной организации и функционирования систем, описывая такие их свойства, как полиморфизм, изоморфизм, симметрия и подобие. В сердечно-сосудистой системе симметрия представлена двумя видами. Один из них связан с закономерностями золотого сечения (ЗС), или золотой пропорции (ЗП), и числами ряда Фибоначчи, другой – с симметрией преобразований. Симметрия всегда основана на инвариантах – постоянных величинах или пропорциях в объекте, относительно которых происходят изменения. Найти инвариант в классе объектов – значит выявить их общие структурные основания. Инварианты можно использовать в качестве контрольных величин при исследовании тех и или иных параметров. Если говорить о сердечно-сосудистой системе, то следует отметить, что режим деятельности сердца, соответствующий покою организма, обусловлен золотым сечением и является наиболее экономичным из всех возможных. При физической нагрузке он отклоняется от этой пропорции, но возвращается к прежним параметрам в покое (симметрия преобразований). Исследование математических соотношений целого ряда показателей деятельности сердца позволяет выявить нарушения на ранних стадиях их развития, используя для этого широко применяемые в клинике методы электрокардиографии (ЭКГ) и эхокардиографии (ЭхоКГ).
ГЛАВА 1
ЗОЛОТАЯ ПРОПОРЦИЯ В МЕДИЦИНЕ И КАРДИОЛОГИИ
Прежде чем приступить к изложению основного вопроса, необходимо вкратце остановиться на понятии «золотая пропорция» и ее проявлении в строении и функциях человека и, в частности, его сердечно-сосудистой системы. Основой красоты является гармония (Васютинский Н. А., 2006; Суббота А. Г., 1994a; Ю. Ф. В., 1876). Пифагорейцы впервые стали трактовать гармонию как единство противоположностей и пытались выразить ее простыми числовыми отношениями. Из многих пропорций, которыми издревле пользовался человек, существует одна, единственная и неповторимая, обладающая уникальными свойствами. Это золотая пропорция, или золотое сечение (Васютинский Н. А., 2006). Строение Вселенной, биосферы, растений, всех живых существ подчиняется закону ЗС.
Каждой системе, в том числе и живой, свойственна симметрия, или гармония. Существуют два вида представлений о симметрии. Одно из них, дошедшее до нас из античных времен, как раз и связано с пропорцией ЗС, а также с числами Фибоначчи. Здесь «симметрия означает тот вид согласованности отдельных частей объекта, который соединяет их в единое целое» (Вейль Г., 1968). Известно, что структура организма в целом и отдельных его систем основывается на принципе ЗС (Васютинский Н. А., 2006; Суббота А. Г., 1994a). Это значит, что целое определяет оптимальность организации системы по отношению к ее функциям, т. е. конкретный набор частей системы и реализацию их свойств (Салтыков А. Б., 2008). ЗС отражает в себе два важных аспекта организации: оно включает аффинную симметрию (симметрию растяжений, сжатий и сдвигов) и оптимально по отношению к композиции противоположностей в сердечном цикле (Цветков В. Д., 1993; Черныш П. П., 2003).
Согласно выдвинутому Ю. А. Урманцевым (1974) закону симметрии, абсолютно каждая система неизбежно симметрична по некоторым признакам и при некоторых преобразованиях и асимметрична в других аспектах. Из данного определения симметрии следует, что вид симметрии, связанный с ЗС, присущ живой системе только в состоянии покоя. При иных состояниях (например, физической нагрузке, заболевании) эта симметрия нарушается.
ЗП отвечает такому делению целого на 2 части, при котором отношение большей части к меньшей равно отношению целого к большей части. Древнейшие сведения о ЗП относятся ко времени расцвета античной культуры. Многие исследователи считают первооткрывателем этой пропорции греческого математика и философа Пифагора. Уже в те времена пятиконечная звезда как яркое выражение ЗС являлась символом жизни и здоровья. В эпоху итальянского Возрождения золотая пропорция (Sectio aurea) вводится в ранг эстетического принципа. Леонардо да Винчи впервые показал, что строение головы человека можно описать правилом ЗС. Золотая пропорция является величиной иррациональной, т. е. несоизмеримой, ее нельзя представить в виде отношений двух целых чисел. Она отвечает простому математическому выражению
и равна 1,6180339.Эта пропорция воспринимается человеком как воплощение красоты, как некий предел гармонии природы. То, что приводит противоположности к единству, и есть гармония. Она заключается в числовых соотношениях. Пифагорейцы видели в числах свойства и отношения, присущие гармоническим сочетаниям.
Если целое принять за единицу, то большая часть в ЗС составит 0,618, меньшая – 0,382. Эти же значения получаются при делении большей и меньшей частей на целое. Квадрат числа 0,618 равняется 0,382. Эти числа называют «золотыми». По-видимому, в этой пропорции кроется одна из фундаментальных тайн природы, которую еще предстоит открыть (Васютинский Н. А., 2006).
Если здоровье человека рассматривать как проявление гармонии, то в основе структур и функций, обеспечивающих его, должна быть заложена ЗП. Проблема нормы (здоровья) – одна из фундаментальных проблем медицины. Понятие нормы характеризует структуру и функционирование здорового организма. Математическое выражение гармонии и симметрии находит применение в методах оценки здоровья человека. Норма – высшая степень симметрии относительно отклонений, уменьшающих ее порядок. Норма – единство, а патология – множественность. В норме организм в течение длительного времени остается тождественным самому себе (Пирузян Л. А. [и др.], 1989). Мерилом здоровья (нормы) являются показатели, отражающие целостность структур и функций, соответствующие колебаниям факторов внешней среды (Малов Ю. С., 2007a; 2007b). Следует отметить, что К. С. Симонян (1971) впервые выдвинул идею применения закона ЗС в качестве принципа определения не просто нормы, а идеальной нормы. Понятие нормы немыслимо без понятия числа и меры. Иррациональное число 1,618 является показателем идеальной нормы. Сюда же можно отнести «золотые» числа 0,618 и 0,382.
С ЗП тесно связан ряд чисел Фибоначчи. Так называли итальянского математика Леонардо из Пизы (Fibonacci – сокращенное filius Bonacci, т. е. сын Боначчи). В своей книге, написанной в 1202 г., он, кроме известных в то время сведений по математике, привел задачу о размножении кроликов от одной пары. В результате решения этой задачи он получил ряд чисел: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610 и т. д. Этот ряд был позже назван его именем. Чем же примечательны числа Фибоначчи? В этом ряду каждое последующее число является суммой двух предыдущих чисел. Такие последовательности, в которых каждый член является функцией предыдущего, в математике называют рекуррентными, или возвратными, последовательностями.
Оказалось, что они обладают рядом интересных и важных свойств. И. Кеплер установил, а Р. Симпсон математически строго доказал, что отношение расположенных рядом чисел Фибоначчи в пределе стремится к ЗП, равной 1,6180339. Полученные отношения как бы колеблются около постоянной величины (1,618), постепенно приближаясь к ней по мере увеличения чисел. Данная закономерная затухающая осцилляция отражает единство и борьбу целочисленной дискретности и непрерывности. Это подобно самой жизни, которая вечно стремится к равновесию и никогда его не достигает, то приближаясь к некоторой золотой середине, то удаляясь от нее. ЗП отражает иррациональность в пропорциях, в природе.
В своем расположении числа Фибоначчи отражают целочисленность в организации природы. Совокупность обеих закономерностей указывает на диалектическое единство двух начал: непрерывного и дискретного, подвижного и инертного (Сороко Э. М., 1984). Поэтому закономерности ряда чисел Фибоначчи и порожденная ими ЗП в той или иной форме проявляются в самых разных организмах: в их эволюции, строении, функционировании. Исследования в самых разных областях природы привели к открытию в них закономерностей, отвечающих числам Фибоначчи и ЗП. Числа Фибоначчи находили в расположении листьев на ветке (филлотаксис), семян в корзинке подсолнечника, чешуек в шишке сосны. Эти же закономерности просматриваются в строении почв, цветков растений, морских звезд, насекомых, в расположении чешуек речных рыб и, конечно же, у всех видов млекопитающих, в том числе и человека. ЗП и числа Фибоначчи взаимосвязаны, поэтому последние должны проявляться в морфологии различных организмов, членении целого на части (Васютинский Н. А., 2006).
Не останавливаясь на многочисленных данных о наличии закономерностей, описываемых числами Фибоначчи, в строении многих видов животных, основное внимание уделим человеку. Общее число костей скелета человека близко к 233, т. е. к одному из чисел Фибоначчи. Позвоночник человека состоит из 33 (34) позвонков (у позвоночных животных их насчитывается 34 или 55), грудина – из 3 костей. Череп включает 8 костей, конечности представлены 3 сегментами. Кисть насчитывает 8 костей запястья и 5 – пясти, 5 пальцев, каждый палец имеет три фаланги, за исключением большого пальца. Трудно предположить, что все это случайные совпадения. Более вероятно наличие определенной закономерности развития организма, от простейших до «вершины эволюции» – человека. Дискретность «по Фибоначчи» прослеживается не только в скелете, но и в других органах. В теле человека насчитывают 630 мышц, составляющих 0,4 его массы. Следует отметить, что 610 является числом Фибоначчи, а 0,382 соответствует золотой пропорции при делении меньшей части на целое. Делая первый шаг, человек приводит в движение 300 мышц, в том числе 144 на позвоночном столбе (144 – число Фибоначчи). От головного мозга отходят 12 пар нервов, а от спинного – 31 пара. В строении головного мозга различают 7 частей: кора, мозолистое тело, мозжечок, мозговой желудочек, мост, продолговатый мозг, гипофиз. В основании головного мозга выделяют 8 частей, выполняющих различные функции. В теле человека насчитывается 8 различных желез внутренней секреции (Суббота А. Г., 1994a).
Кишечник и соседние с ним органы пищеварения насчитывают 13 частей, органы дыхания человека – 8. Желудок состоит из 3 отделов: фундального, тела и антрального отдела. Натощак желудок имеет в длину приблизительно 18 см, в ширину – 7 см. Отношение длины к ширине желудка равняется 2,625, это соответствует квадрату 1,618, т. е. ЗП. В печени, исходя из современных данных, с учетом обособленного крово- и лимфообращения, иннервации, оттока желчи, различают две доли, 5 секторов и 8 сегментов. То есть в основе морфологической структуры печени лежат числа Фибоначчи. Эти же закономерности находят в почках и сердце. Даже волос представлен 8 частями: сосочек, луковица, корень, пучок мышц, сальная железа, нерв, кровеносные сосуды, стержень. Высота человеческого тела равняется 8-кратной высоте головы.
В экспериментах по изучению активности сердечной мышцы В. Д. Цветков (1993) выделял следующие периоды: интервал асинхронного напряжения, интервал синхронного напряжения, фаза напряжения, интервал сокращения, фаза активного состояния миокарда. Математическая обработка результатов показала, что отношение этих периодов к общей длительности (Т) сердечного цикла соответствует числам:
,т.е.отражает последовательность ряда Фибоначчи – 5, 8, 13, 21, 34. По его мнению, организация сердечного цикла в соответствии с ЗП и числами Фибоначчи является результатом длительной эволюции млекопитающих, эволюции в направлении оптимизации структуры и функций, обеспечения жизнедеятельности при минимальных затратах энергии и «живого строительного материала». Очевидно, работа сердечно-сосудистой системы по законам ЗП обеспечивает гармоническое функционирование всего организма.Многочисленные исследования показали, что в мозгу здорового человека при различных его состояниях преобладают электрические колебания определенных частот. Изменение активности мозга происходит не непрерывно, а дискретно, скачками, от одного уровня к другому. Каждому состоянию мозга соответствуют свои специфические волны колебаний на электроэнцефалограмме (ЭЭГ). Состоянию спокойного бодрствования отвечает наиболее устойчивый α-ритм с частотой колебаний преимущественно от 8 до 13 Гц. Самые медленные колебания с частотой 0,5 – 4 Гц обнаружены у δ-ритма, характерного для глубокого сна. При появлении неприятности или опасности в мозгу доминирует θ-ритм с частотами от 4 – 7 до 6 – 8 Гц. Умственной работе соответствует β-ритм с граничными частотами 14 – 35 Гц, эмоциональному возбуждению мозга – ритм с частотой 35 – 55 Гц. Нетрудно заметить, что граничные частоты ритмов мозга или точно отвечают числам Фибоначчи, или очень близки к ним, а их отношения тяготеют к ЗП.
Средняя геометрическая величина делит диапазон частот любой волны мозга на высокочастотную и низкочастотную области. Этот инвариант Я. А. и А. А. Соколовы (1976) приняли за основную характеристику ритмов мозга. Для β-ритма, ответственного за умственную деятельность человека, этот инвариант оказался близким к ЗП. Средние геометрические частоты семи ритмов мозга образуют следующий ряд величин: 2,5; 5,3; 10,2; 22,1; 43,8; 80; 162,9. Здесь средняя частота каждого последующего ритма ЭЭГ в два раза больше, чем у предыдущего. Это позволяет описать все семь ритмов одним рядом геометрической прогрессии: 1, 2, 4, 8, 16, 32, 64, или общей формулой f =2n, где f – частота колебаний, n =0,1,2,3,4,5,6. Выходит, что электрическая активность мозга представляет собой развертывающуюся во времени спираль геометрической прогрессии, с нарастанием частоты колебаний на каждом последующем уровне. Но ведь эта спираль ритмов ЭЭГ отражает и эволюцию организмов. Как и в характеристике расположения планет Солнечной системы, две основные закономерности развития (ЗП и соответствие ряду Фибоначчи) взаимно переплетаются, объединяются и сочетаются в самых разнообразных вариантах.
Чем же обусловлена частота электрических ритмов деятельности мозга и, прежде всего, наиболее устойчивого α-ритма? Источником, задающим его, может быть, по мнению Н. Слуцкого (1976), геомагнитное поле, имеющее частоту колебаний 8 – 13 Гц, ту же самую, что и α-ритм мозга. Точно такую же частоту имеют и электростатические волны атмосферы. Остается предположить, что под влиянием геомагнитного поля с частотой колебаний в пределах 8 – 13 Гц в процессе эволюции организмов их мозг настроился на эту частоту электрических колебаний.
Числа Фибоначчи неразрывно связаны с ЗП, которая также проявляется в строении и функциях тела человека и его органов. С. В. Петухов (1981) обратил внимание на то, что схемы опорно-двигательного аппарата разных позвоночных животных удивительно похожи. Общим для них является принцип трехчленного строения конечностей. Отношение длин проксимального и среднего отрезков, а также среднего и дистального составляет Ф2: 2 = 1,309 «золотой вурф». Это полностью относится и к человеку. Пальцы рук человека состоят из трех фаланг: основной, средней и ногтевой. Длина основных фаланг всех пальцев, кроме большого, равна сумме длин двух остальных фаланг, а длины фаланг каждого пальца относятся друг к другу по правилу ЗП.
С античных времен известно, что линия, проведенная через пупок взрослого человека, делит его тело на две неравные части, соотношение которых близко к ЗП – иррациональной предельной величине, равной 1,618. А. Цейзинг (Zeising A., 1854; 1855), измерив тысячи человеческих тел, установил, что ЗП есть среднестатистическая величина, характерная для всех хорошо развитых тел. Средняя пропорция мужских тел близка к 13/8 и равна 1,625, а женских – к 8/5, т. е. 1,6. Аналогичные значения получены при изучении населения бывшего СССР (1,623 для мужчин и 1,605 для женщин). Пропорции тела мужчин и женщин отклоняются от ЗП в разные стороны. В этом и состоит геометрическое различие в половой анатомии мужчин и женщин (Васютинский Н. А., 2006).
По мнению И. Шевелева (1973), пропорции тела человека отвечают геометрической гармонии, основанной на соотношениях в прямоугольнике «два квадрата», диагональ которого равна 5, а стороны – 1 и 2.Мужская фигура вписывается в прямоугольник с отношением сторон 0,528: 2 и разделена пополам в лонном сращении. Женская фигура вписывается в прямоугольник с отношением сторон 0,472: 2. Отношение 528: 472 является производным от ЗП и равно 1,119. Квадратный корень из этого числа равен 1,058, что почти точно соответствует и музыкальной секунде, и модулю русских саженей, и соотношению числа рожденных мальчиков и девочек. Отношение высоты «венчания» (суммы высот шеи и головы) к росту человека равно 0,326. Пропорция «венчания» (отношение высоты шеи к высоте головы) близка к ЗС – 0,202: 0,326. «Человеческое тело – лучшая красота на земле», – утверждал Н. Г. Чернышевский. «Обнаженное тело кажется мне прекрасным. Для меня оно – чудо, сама жизнь, где не может быть ничего безобразного», – говорил О. Роден.