Financial risk management has become a popular practice amongst financial institutions to protect against the adverse effects of uncertainty caused by fluctuations in interest rates, exchange rates, commodity prices, and equity prices. New financial instruments and mathematical techniques are continuously developed and introduced in financial practice. These techniques are being used by an increas…
Financial risk management has become a popular practice amongst financial institutions to protect against the adverse effects of uncertainty caused by fluctuations in interest rates, exchange rates, commodity prices, and equity prices. New financial instruments and mathematical techniques are continuously developed and introduced in financial practice. These techniques are being used by an increas…
Financial risk management has become a popular practice amongst financial institutions to protect against the adverse effects of uncertainty caused by fluctuations in interest rates, exchange rates, commodity prices, and equity prices. New financial instruments and mathematical techniques are continuously developed and introduced in financial practice. These techniques are being used by an increas…
Mixed modelling is one of the most promising and exciting areas of statistical analysis, enabling more powerful interpretation of data through the recognition of random effects. However, many perceive mixed modelling as an intimidating and specialized technique. This book introduces mixed modelling analysis in a simple and straightforward way, allowing the reader to apply the technique confidently…
Mixed modelling is one of the most promising and exciting areas of statistical analysis, enabling more powerful interpretation of data through the recognition of random effects. However, many perceive mixed modelling as an intimidating and specialized technique. This book introduces mixed modelling analysis in a simple and straightforward way, allowing the reader to apply the technique confidently…
Mixed modelling is one of the most promising and exciting areas of statistical analysis, enabling more powerful interpretation of data through the recognition of random effects. However, many perceive mixed modelling as an intimidating and specialized technique. This book introduces mixed modelling analysis in a simple and straightforward way, allowing the reader to apply the technique confidently…
Mixed modelling is one of the most promising and exciting areas of statistical analysis, enabling more powerful interpretation of data through the recognition of random effects. However, many perceive mixed modelling as an intimidating and specialized technique. This book introduces mixed modelling analysis in a simple and straightforward way, allowing the reader to apply the technique confidently…
The essentials of regression analysis through practical applications Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgement. Regression Analysis by Example, Fourth Edition has been expanded and thor…
Simulation and Monte Carlo is aimed at students studying for degrees in Mathematics, Statistics, Financial Mathematics, Operational Research, Computer Science, and allied subjects, who wish an up-to-date account of the theory and practice of Simulation. Its distinguishing features are in-depth accounts of the theory of Simulation, including the important topic of variance reduction techniques, tog…
Simulation and Monte Carlo is aimed at students studying for degrees in Mathematics, Statistics, Financial Mathematics, Operational Research, Computer Science, and allied subjects, who wish an up-to-date account of the theory and practice of Simulation. Its distinguishing features are in-depth accounts of the theory of Simulation, including the important topic of variance reduction techniques, tog…
Simulation and Monte Carlo is aimed at students studying for degrees in Mathematics, Statistics, Financial Mathematics, Operational Research, Computer Science, and allied subjects, who wish an up-to-date account of the theory and practice of Simulation. Its distinguishing features are in-depth accounts of the theory of Simulation, including the important topic of variance reduction techniques, tog…
Simulation and Monte Carlo is aimed at students studying for degrees in Mathematics, Statistics, Financial Mathematics, Operational Research, Computer Science, and allied subjects, who wish an up-to-date account of the theory and practice of Simulation. Its distinguishing features are in-depth accounts of the theory of Simulation, including the important topic of variance reduction techniques, tog…
Uniquely combining theory, application, and computing, this book explores the spectral approach to time series analysis The use of periodically correlated (or cyclostationary) processes has become increasingly popular in a range of research areas such as meteorology, climate, communications, economics, and machine diagnostics. Periodically Correlated Random Sequences presents the main ideas of the…
A timely and applied approach to the newly discovered methods and applications of U-statistics Built on years of collaborative research and academic experience, Modern Applied U-Statistics successfully presents a thorough introduction to the theory of U-statistics using in-depth examples and applications that address contemporary areas of study including biomedical and psychosocial research. Utili…
Now updated in a valuable new edition—this user-friendly book focuses on understanding the «why» of mathematical statistics Probability and Statistical Inference, Second Edition introduces key probability and statis-tical concepts through non-trivial, real-world examples and promotes the developmentof intuition rather than simple application. With its coverage of the recent advancements in compute…