banner banner banner
Scientific research basics in the transportation process
Scientific research basics in the transportation process
Оценить:
 Рейтинг: 0

Scientific research basics in the transportation process


The process of cognition includes the accumulation of facts. No science can exist without systematization and generalization, without logical comprehension of facts. But although facts are the necessary material for a scientist, they are not science in themselves. Facts become an integral part of scientific knowledge when they appear in a systematized, generalized form.

Facts are systematized and generalized with the help of the simplest abstractions – concepts (definitions), which are important structural elements of science. The broadest concepts are called categories. These are the most general abstractions. The categories include philosophical concepts about the form and content of phenomena, in economic theory – this is a product, value, etc.

An important form of knowledge is principles (postulates), axioms. Under the principle understand the initial provisions of any branch of science. They are the initial form of systematization of knowledge (the axioms of Euclidean geometry, Bohr’s postulate in quantum mechanics, etc.).

The most important component link in the system of scientific knowledge is scientific laws that reflect the most essential, stable, repetitive objective internal connections in nature, society and thinking. Usually laws act in the form of a certain correlation of concepts, categories.

The highest form of generalization and systematization of knowledge is theory. Theory is understood as the doctrine of generalized experience (practice), which formulates scientific principles and methods that make it possible to generalize and cognize existing processes and phenomena, analyze the effect of various factors on them and offer recommendations for using them in people’s practical activities.

1.2. Science classification

Scientific disciplines, which in their totality form the system of sciences as a whole, can be very conditionally divided into 3 large groups (subsystems) – natural, social and technical, differing in their subjects and methods. There is no sharp line between these subsystems – a number of scientific disciplines occupy an intermediate position.So, for example, at the junction of technical and social sciences there is technical aesthetics, between natural and technical sciences – bionics, between natural and social sciences – economic geography. Each of these subsystems, in turn, forms a system of separate sciences coordinated and subordinated by subject and methodological connections in a variety of ways, which makes the problem of their detailed classification extremely complex and not completely resolved to this day.

Along with traditional research conducted within the framework of any one branch of science, the problematic nature of the orientation of modern science has given rise to a wide deployment of interdisciplinary and complex research conducted by means of several different scientific disciplines, the specific combination of which is determined by the nature of the corresponding problem. An example of this is the study of environmental problems, which is at the crossroads of technical sciences, biology, earth sciences, medicine, economics, mathematics, etc. Such problems arising in connection with the solution of large farms and social problems are typical of modern science.

According to their orientation, according to their direct relation to practice, individual sciences are usually divided into fundamental and applied. The task of the fundamental sciences is the knowledge of the laws governing the behavior and interaction of the basic structures of nature, society and thinking.

These laws and structures are studied in their “pure form”, as such, regardless of their possible use. Therefore, the fundamental sciences are sometimes called “pure”. The immediate goal of applied sciences is the application of the results of fundamental sciences to solve not only cognitive, but also social and practical problems. Therefore, here the criterion of success is not only the achievement of truth, but also the measure of satisfaction of the social order. At the intersection of applied sciences and practice, a special area of research is developing – developments that translate the results of applied science into the form of technological processes, structures, industrial materials, etc.

Applied sciences can develop with a predominance of both theoretical and practical problems. For example, in modern physics, electrodynamics and quantum mechanics play a fundamental role, the application of which to the knowledge of specific subject areas forms various branches of theoretical applied physics – metal physics, semiconductor physics, etc. Further application of their results to practice gives rise to a variety of practical applied sciences – metallurgy, semiconductor technology, etc., the direct connection of which with production is carried out by the corresponding specific developments. All technical sciences are applied.

As a rule, fundamental sciences are ahead of applied sciences in their development, creating a theoretical reserve for them. Applied science accounts for up to 80—90% of all research and funding in modern science.

One of the urgent problems of the modern organization of science is the establishment of strong, systematic relationships and the reduction of the time of movement within the framework of the cycle “fundamental research – applied research – development – implementation”.

In the Classifier of directions and specialties of higher professional education with a list of master’s programs (specializations) developed by scientific and methodological councils – departments of UMO in the areas of education, the following are highlighted:

1. Natural sciences and mathematics (mechanics, physics, chemistry, biology, soil science, geography, hydrometeorology, geology, ecology, etc.);

2. Humanities and socio-economic sciences (culturology, theology, philology, philosophy, linguistics, journalism, book science, history, political science, psychology, social work, sociology, regional studies, management, economics, art, physical culture, commerce, agroeconomics, statistics, art, jurisprudence, etc.);

3. Engineering sciences (construction, printing, telecommunications, metallurgy, mining, electronics and microelectronics, geodesy, radio engineering, architecture, etc.);

4. Agricultural sciences (agronomy, zootechnics, veterinary medicine, agroengineering, forestry, fisheries, etc.).

The Nomenclature of specialties of scientific workers, approved by the Ministry of Science and Technology of the Russian Federation on January 25, 2000, indicates the following branches of science: physical and mathematical, chemical, biological, geological and mineralogical, technical, agricultural, historical, economic, philosophical, philological, geographical, legal, pedagogical, medical, pharmaceutical, veterinary, art history, architecture, psychological, sociological, political, cultural and earth sciences.

Each of the named groups of sciences can be subjected to further fragmentation. In statistical collections, the following sectors of science are usually distinguished: academic, industry, university and factory.

2. Research and its stages

2.1 Classification of scientific studies

The form of existence and development of science is scientific research. The Federal Law of the Russian Federation of August 23, 1996 «On Science and State Scientific and Technical Policy» defines research activities as activities aimed at obtaining and applying new knowledge.

The purpose of scientific research is the definition of a specific object and a comprehensive, reliable study of its structure, characteristics, relationships based on the principles and methods of cognition developed in science, as well as obtaining results useful for human activity, introduction into production with a further effect. The object of scientific research is a material or ideal system, and the subject is the structure of the system, the interaction of its elements, various properties, patterns of development.

The results of scientific research are evaluated the higher, the higher the scientific nature of the conclusions and generalizations made, the more reliable and effective they are. They should form the basis for new scientific developments.

One of the most important requirements for scientific research is a scientific generalization, which will allow establishing the dependence and connection between the phenomena and processes under study and drawing scientific conclusions. The deeper the findings, the higher the scientific level of the study.

Scientific research is classified on various grounds. For example, the Federal Law «On Science and State Science and Technology Policy» distinguishes between fundamental and applied research. Fundamental scientific research is understood as experimental or theoretical activity aimed at obtaining new knowledge about the basic laws of the structure, functioning and development of a person, society, and the natural environment. Applied scientific research is defined as research aimed primarily at applying new knowledge to achieve practical goals and solve specific problems. According to the source of funding, scientific research is budgetary, contractual and unfunded. Budget research is financed from the budget of the Russian Federation or the budgets of the constituent entities of the Russian Federation. Contractual research is financed by organizations – customers under economic contracts. Unfunded research can be carried out at the initiative of a scientist, an individual plan of a teacher.

By duration, scientific research can be divided into long-term, short-term and express research.

In science, one can single out empirical and theoretical levels of research and organization of knowledge. The theoretical level of scientific knowledge presupposes the presence of special abstract objects (constructs) and the theoretical laws connecting them, created for the purpose of an idealized description and explanation of empirical situations, i.e. for the purpose of understanding the essence of phenomena.

Their goal is to expand the knowledge of society and help to better understand the laws of nature. Such developments are used mainly for the further development of new theoretical studies, which can be long-term, budgetary, etc.

The elements of empirical knowledge are facts obtained through observations and experiments and stating the qualitative and quantitative characteristics of objects and phenomena. Stable repeatability and relationships between empirical characteristics are expressed using empirical laws, often of a probabilistic nature.

So, the theoretical level of research is characterized by the predominance of logical methods of cognition. At this level, the facts obtained are investigated, processed with the help of logical concepts, inferences, laws and other forms of thinking. Here, the objects under study are mentally analyzed, generalized, their essence, internal connections, laws of development are comprehended. At this level, sensory cognition (empiricism) may be present, but it is subordinate. The structural components of theoretical knowledge are the problem, hypothesis and theory. A problem is understood as a complex theoretical or practical task, the methods of solving which are unknown or not fully known.

A hypothesis is an assumption that requires verification and proof about the cause that causes a certain effect, about the structure of the objects under study and the nature of internal and external relations of structural elements. A hypothesis is scientific only if it is supported by the facts and it can exist only as long as it does not contradict the reliable facts of experience, otherwise it becomes just a fiction. The hypothesis is verified by the corresponding facts of experience, especially by experiment, obtaining the character of truth.

So the scientific hypothesismust meet the following requirements:

– relevance, i.e. relevance to the facts on which it relies;

– verifiability empirically (with the exception of unverifiable hypotheses);

– compatibility with existing scientific knowledge;

– possessing explanatory power, i.e. a certain number of facts, consequences, confirming it, should be derived from the hypothesis.

– the hypothesis from which the largest number of facts is derived will have greater explanatory power;

– simplicity, i.e. it should not contain any arbitrary assumptions, subjectivist accretions.

The facts of experience in some limited scientific field, together with realized, rigorously proven hypotheses, form a theory. Theory is an integral system of reliable knowledge. It is the highest form of generalization and systematization of knowledge.

Theory is a doctrine of generalized experience (practice), formulating scientific principles and methods that allow you to generalize and understand existing processes and phenomena, analyze the effect of various factors on them and offer recommendations for using them in people’s practical activities. The theory not only describes the totality of facts, but also explains them, i.e. reveals the origin and development of phenomena and processes, their internal and external connections, causal and other dependencies. All the provisions and conclusions contained in the theory are substantiated and proven.

The structure of the theory is formed by concepts, judgments, laws, scientific positions, teachings, ideas and other elements.

Concept is a thought that reflects the essential and necessary features of a certain set of objects or phenomena.

Category is a general, fundamental concept that reflects the most essential properties and relationships of objects and phenomena. Categories are philosophical, general scientific and related to a particular branch of science. Examples of categories in economic sciences: price, finance, credit.

A scientific term is a word or combination of words denoting a concept used in science. The set of concepts (terms) that are used in a particular science forms its conceptual apparatus.

A judgment is a thought that affirms or denies something.

A principle is a similar position of any branch of science. They are the initial form of systematization of knowledge (the axioms of Euclidean geometry, Bohr’s postulate in quantum mechanics, etc.).

An axiom is a position that is initial, unprovable, and from which, according to established rules, other provisions are derived. Logical axioms are, for example, the law of identity, the law of contradiction, the law of exclusion of the third.

Law – a provision expressing the general course of things in any area; a statement about how something is necessary or happens to be necessary. Laws are objective and express the most significant, stable, causal connections and relationships between phenomena and processes. Laws can be classified on various grounds. So, according to the main spheres of reality, one can single out the laws of nature, society, thinking and cognition; according to the scope of action – universal, general and private.