Аристотель оспорил и идею пифагоровой «переносной библиотеки» – будто семя собирает наследственную информацию, проходя по телу и получая «тайные инструкции» от каждой его части. Аристотель отметил, что «некоторых вещей родители даже не имеют[56] во время порождения, например седых волос или бороды»[57], но передают эти признаки детям. Бывает, что наследуются не только телесные черты: походка, манера говорить, привычка пялиться в пространство или даже психическое состояние. Аристотель доказывал, что такие признаки – нематериальные по своей природе – никак не могут материализоваться в семени. И, пожалуй, самый очевидный его аргумент против схемы Пифагора касался женской анатомии. Откуда отцовское семя впитает инструкции о детородных органах дочери, если у отца их нет? Теория Пифагора могла объяснить происхождение всех частей тела, кроме ключевых для процесса наследования – гениталий.
Аристотель предложил альтернативную теорию[58], поразительно радикальную для того времени: вероятно, женщины тоже «вкладываются» в плод вполне материально – чем-то вроде женского семени. Вероятно, плод формируется совместным участием, сложением мужских и женских составляющих. В поисках подходящей аналогии для мужского вклада Аристотель остановился на «принципе движения». «Движения» не в смысле перемещения в пространстве, а в смысле перехода возможности в действительность; то есть отец дает инструкции (информацию) по этому переходу – код, как сказали бы сейчас. Обмен физическим материалом во время совокупления – лишь поверхностная имитация более таинственного, мистического обмена. Материя, на самом деле, не так важна; от мужчины к женщине передается не материя, а сообщение[59]. Подобно тому, как архитектурный план предопределяет возведение здания или искусность плотника направляет обработку бревна, мужское семя несет инструкции по созданию ребенка. «[Как] от плотника не переходит в древесину ничего вещественного[60], – пишет Аристотель, – однако за счет совершаемых плотником движений материал получает от него характерные образ и форму. <…> Примерно так и природа пользуется семенем как инструментом»[61].
Женское же семя дает плоду сырой материал, который можно сравнить с древесиной для изделия плотника или бетоном для здания, – вещество для воплощения образа будущей жизни. Аристотель считал этим материалом менструальную кровь. Мужское семя придает крови форму ребенка (сейчас это звучит нелепо, но даже эту мысль Аристотель логически обосновал: если кровотечения пропадают после зачатия, значит, плод должен формироваться из менструальной крови).
Аристотель ошибался, считая, что женский вклад – «материал», а мужской – «сообщение», но если абстрагироваться от деталей, можно понять, что он уловил одну из основных истин о природе наследственности. Аристотель понял, что передача наследственных признаков по сути представляет собой передачу информации. Информация используется для построения организма с нуля: сообщение превращается в материал. А когда организм созревает, он производит мужское или женское семя, превращая материал в сообщение. Эта схема напоминает не пифагоров треугольник, а скорее круг – процесс зацикливается: форма порождает информацию, а информация – форму. Спустя века биолог Макс Дельбрюк пошутит[62], что Аристотелю нужно было бы посмертно присудить Нобелевскую премию – за открытие ДНК.
Но если наследственные черты переносятся в виде информации, то как эта информация кодируется? Слово «код» происходит от латинского caudex, обозначающего дощечки из мягкой древесины, на которых писцы выскребали надписи. Что же такое «кодекс» наследственности? Что там переписывается и как? Как наследственный материал упаковывается и передается от одного тела к другому? Кто зашифровывает данные и кто их расшифровывает, чтобы создать ребенка?
Самое изобретательное решение из предлагаемых после Аристотеля было самым простым: вообще забыть о коде. Новая теория гласила, что семя уже содержит маленького человечка – крошечный плод, полностью сформированный, но сжатый и скрученный в своей миниатюрной оболочке, пока не начнет постепенно разбухать до состояния младенца. Разные варианты этой теории отражены в средневековых мифах и фольклоре. В 1520-х швейцарско-немецкий алхимик Парацельс[63], руководствуясь теорией «человечка в семени», предположил, что человеческая сперма, подогретая конским навозом и закопаная в грязь на 40 недель (продолжительность беременности), всенепременно превратится в человека, хоть и с некоторыми уродствами. Зачатие же нормального ребенка – всего лишь перенос крошечного человечка, гомункула, из отцовского семени в материнскую матку, где он разрастается до размеров плода. Таким образом, в этой теории не было места для кода, она ограничивалась миниатюризацией.
Своеобразная привлекательность этой концепции, известной как преформизм, заключалась в предзаложенной бесконечной повторяемости процесса. Так как гомункул должен был созревать и получать возможность заводить своих детей, у него внутри уже должны были находиться мини-гомункулы – крошечные люди внутри людей, бесконечная череда матрешек, грандиозная цепь существ, протянувшаяся от первого человека, Адама, и уходящая в необозримое будущее. Для средневековых христиан такая человеческая цепь служила предельно точным и наглядным объяснением идеи первородного греха. Если все будущие люди уже были заключены в прошлых, то каждый из нас должен был физически пребывать в теле Адама – «плавать <…> в лоне Первого Родителя нашего»[64], как писал один теолог, – в том числе и в решающий момент грехопадения. Греховность, таким образом, проникла в нас за тысячи лет до нашего рождения: из лона Адама – напрямую каждому потомку его. Каждый из нас несет эту скверну – не потому, что наш далекий предок соблазнился яблоком в далеком саду, а потому, что сами мы, будучи в теле Адама, вкусили тот плод.
Второй притягательный момент преформизма заключался в отсутствии проблемы расшифровки. Если механизм шифрования – преобразования человеческого тела в некое подобие кода – биологи того времени еще как-то могли объяснить (осмосом, как у Пифагора), то обратный процесс – расшифровка, превращение кода назад в человека – был тайной за семью печатями. Как такой сложный объект, как человеческое тело, может возникнуть от объединения сперматозоида и яйцеклетки? Гомункул избавлял от этой концептуальной проблемы. Если ребенок уже «предформирован», то его формирование с момента зачатия сводится лишь к увеличению в размерах. Плод – биологический аналог надувной куклы, и для его развития не нужен ни код, ни ключ. Хочешь, чтобы появился человек, – просто добавь воды.
Теория была такой соблазнительной, такой отточенной и наглядной, что даже изобретение микроскопа не убило гомункула, как можно было бы ожидать. В 1694 году Николаас Хартсокер[65], голландский физик и микроскопист, якобы с натуры изобразил этого кроху – с огромной головой, скрюченного в позе эмбриона в головке сперматозоида. В 1699-м еще один голландский микроскопист заявил, что в изобилии наблюдал гомункулов, плавающих в человеческой сперме. Подобно другим фантазиям с антропоморфными образами – например, обнаружению человеческих лиц на лунной поверхности, – эта теория постоянно разрасталась под линзой воображения. Рисунки гомункула в XVII веке только множились; хвост сперматозоида изображался в виде длинного пучка волос на голове человечка, а головка клетки – в виде миниатюрного черепа. К концу XVII века преформизм считался самым логичным и непротиворечивым объяснением наследования признаков у людей и животных. Люди вырастают из маленьких людей, как деревья вырастают из черенков. «В природе ничего не создается заново[66], – писал голландский ученый Ян Сваммердам в 1669 году, – происходит лишь распространение уже существующего».
Но не всех убеждала история о бесконечно вложенных друг в друга миниатюрных человечках. Главный вызов преформизму бросила идея о том, что во время эмбриогенеза должны протекать какие-то процессы, ведущие к формированию абсолютно новых частей тела. Люди не поставляются в готовом виде, предварительно компактизированными и лишь ожидающими увеличения в размерах. Они должны формироваться с нуля согласно особым инструкциям, скрытым в сперматозоидах и яйцеклетках. Конечности, туловище, мозг, глаза, лицо, даже темперамент и наследуемые склонности – все это должно создаваться заново всякий раз, когда эмбрион развивается в плод. Новое создание – результат… создания.
Но какой же импульс – или указание – заставляет семя и яйцеклетку превращаться в эмбрион, а затем во взрослый организм? В 1768 году берлинский эмбриолог Каспар Вольф[67] попытался ответить на этот вопрос, выдумав особый закон, направляющий развитие, vis essentialis corporis[68], который определяет постепенную трансформацию оплодотворенной яйцеклетки в человека. Подобно Аристотелю, Вольф считал, что эмбрион содержит каким-то образом зашифрованную информацию – код: не просто уменьшенную версию человека, а инструкцию, как его создать с нуля. Но, кроме латинского названия для своего туманного закона, Вольф не смог придумать ничего конкретизирующего эту идею. Инструкции, уклончиво писал он, смешиваются в оплодотворенной яйцеклетке, а затем начинает действовать vis essentialis, подобно невидимой руке формирующая из этой массы человека.
Если биологи, философы, христианские ученые и эмбриологи бо́льшую часть XVIII столетия проводили в ожесточенных спорах о преформизме и «невидимой руке», то стороннего наблюдателя, и это вполне простительно, мало впечатляли обе идеи – уже хотя бы потому, что были сильно потрепаны временем. «Противоборствующие в наши дни точки зрения[69] существовали еще несколько веков назад», – резонно сетовал один биолог XIX века. Действительно, преформизм по большей части повторял теорию Пифагора – что сперма несет всю информацию для создания нового человека. А «невидимая рука» была слегка отполированной идеей Аристотеля о том, что наследственность обеспечивается сообщениями – руководствами по ваянию из материи («рука» несет инструкции, описывающие формирование эмбриона).
Со временем обе теории эффектно подтвердят и столь же эффектно опровергнут. И Аристотель, и Пифагор отчасти были правы, отчасти ошибались. Но в начале 1800-х казалось, что область знаний о наследственности и эмбриогенезе зашла в концептуальный тупик. Величайшие мыслители-биологи, бившиеся над проблемой наследственности, едва ли сумели продвинуть область дальше туманных догадок двух ученых мужей, рожденных на двух греческих островах две тысячи лет назад.
Тайна из тайн
Твердят, что все идет само собой —
случайны и прогресс, и каждый сбой.
Еще никто не разрешил вопроса,
с чего пошли макаки-альбиносы.
В природе, говорят, все поезда
идут без цели и неведомо куда,
но Дарвин загорелся интересом
к иным – целенаправленным процессам.
Роберт Фрост,«Случайно, но к цели» (Accidentally on purpose)[70], [71]Зимой 1831 года, когда Мендель еще учился в силезской школе, начинающий священник Чарльз Дарвин взошел на корабль Его Величества «Бигль»[72]. Этот бриг-шлюп с десятью пушками бросил якорь в заливе Плимут-Саунд на юго-западном побережье Англии. Дарвину, сыну и внуку известных врачей, тогда было 22 года. От отца он унаследовал слегка квадратную форму лица и приятные его черты, от матери – фарфоровую кожу, а густые, нависающие над глазами брови были характерной чертой многих поколений Дарвинов. Молодой человек пытался изучать медицину[73] в Эдинбурге, но безуспешно. Придя в ужас от «криков привязанного ребенка, лежащего на окровавленных опилках <…> в операционном театре», он бросил медицину и занялся изучением теологии в Колледже Христа при Кембриджском университете[74]. Но интересы Дарвина выходили далеко за границы теологии. Затворничая в комнате над табачной лавкой[75] на Сидней-стрит, он занимал себя коллекционированием жуков, изучением ботаники, геологии, геометрии и физики, а также жаркими спорами о боге, божественном вмешательстве и сотворении животных. Намного больше, чем теология и философия, его увлекала естественная история – изучение природы, основанное на системных научных принципах. Дарвин перенимал опыт у другого священника, ботаника и геолога Джона Генслоу. Генслоу основал и курировал Кембриджский ботанический сад[76] – огромный музей под открытым небом, посвященный естественной истории. Именно в этом саду Дарвин учился собирать, определять и классифицировать образцы растений и животных.
В годы учебы сильнее всего воспламенили воображение Дарвина две книги. Первой стала вышедшая в 1802 году «Естественная теология»[77] (Natural theology) Уильяма Пейли, бывшего долстонского викария. Одно рассуждение из этой книги глубоко отозвалось в душе Дарвина. Представим, писал Пейли, что человек идет по пустырю и натыкается на часы, лежащие на земле. Он поднимает их, вскрывает и видит внутри изящнейшую систему вращающихся шестеренок, благодаря которой механическое устройство способно показывать время. Не логично ли будет предположить, что такое устройство мог изготовить только часовщик? Ту же логику следует применять и к миру природы, рассуждал Пейли. Совершенство строения живых организмов и человеческих органов – «шарнир, на котором поворачивается голова, связки внутри капсулы тазобедренного сустава» – может указывать лишь на то, что все живое создал искуснейший мастер, небесный часовщик – бог.
Вторая книга, «Предварительные рассуждения об изучении естественной философии»[78] (A Preliminary Discourse on the Study of Natural Philosophy), вышла из-под пера астронома Джона Гершеля в 1830-м. В ней выражалась совсем другая точка зрения: на первый взгляд, природа неимоверно сложна, но наука способна свести внешне сложные явления к простым составляющим – причинам и следствиям. Движение – результат приложения силы к объекту; тепло возникает за счет переноса энергии; звук – следствие колебаний воздуха. Гершель не сомневался, что и химические, и даже биологические явления обусловлены работой таких причинно-следственных механизмов.
Гершеля особенно интересовало возникновение живых организмов, и его методичный ум разбил этот вопрос на две части. Первая охватывала проблему создания жизни из не-жизни – возникновения живого ex nihilo[79]. Здесь Гершель не решился посягнуть на доктрину божественного вмешательства. «Восходить к истокам вещей[80], рассуждать о творении – это занятие не для естественного философа», – писал он. Органы и организмы могут подчиняться законам физики и химии – но возникновение самой жизни эти законы никогда не смогут объяснить: словно бог обустроил для Адама милую маленькую лабораторию в Эдеме, но запретил ему заглядывать за стены сада.
Ко второй проблеме, по мнению Гершеля, подступиться было легче. Какой процесс породил наблюдаемое в природе разнообразие после того, как жизнь была создана? Как, например, из какого-то вида животных возникает другой, новый вид? Антропологи-языковеды показали, что новые языки возникают из старых путем трансформации слов. Латынь и санскрит произошли от древнего индоевропейского языка в результате накопления вариаций и мутаций. Английский и фламандский тоже имеют общий корень. Геологи предположили, что современный вид земной поверхности – ее скалы, пропасти и горы – результат преобразования ее древнего рельефа. «Реликты минувших веков[81], – писал Гершель, – несут неизгладимые следы, способные дать нам много знаний». Это была блестящая догадка: ученый может познавать настоящее и будущее по реликтам прошлого. Гершель не знал правильного механизма видообразования, зато ставил правильный вопрос. Он назвал его «тайна из тайн»[82], [83].
Естественная история – дисциплина, захватившая Дарвина в Кембридже, – еще не была готова разгадать гершелеву «тайну из тайн». Для пытливых греков изучение живых существ было тесно связано с вопросом происхождения мира природы. Но средневековые христиане быстро поняли, что это направление исследований может вылиться только в неблагонадежные теории. Природа – творение Господа. Чтобы не рисковать, идя против доктрин христианства, естествоиспытателям приходилось рассказывать историю природы в соответствии с сюжетом библейского Бытия.
Приветствовался именно описательный подход к природе, то есть определение, именование и классификация растений и животных, ведь, описывая чудеса природы, вы, по сути, прославляете великое многообразие живых существ, созданных всемогущим богом. Механистический же взгляд на природу, исследующий причинно-следственные связи, грозил пошатнуть саму основу доктрины сотворения мира. Задаваться вопросом, почему и когда животные возникли, под действием какого механизма или силы, означало подвергать сомнению миф о божественном творении и подходить опасно близко к ереси. Неудивительно, что к концу XVIII века среди естествоиспытателей преобладали священники-натуралисты[84]: викарии, пасторы, аббаты, дьяконы и монахи выращивали сады, собирали образцы растений и животных, отдавая должное чудесам божественного творения и, как правило, избегая вопросов о фундаментальных христианских постулатах. Церковь предоставляла таким ученым тихую, безопасную гавань, но в то же время эффективно подавляла их любознательность. Запреты на «неправильные» исследования были такими суровыми, что священники-натуралисты даже не подвергали сомнению мифы о сотворении мира; разделение церкви и состояния умов тогда достигло апогея. В результате в области естествознания возник специфический перекос. Биологическая таксономия – наука о классификации животных и растений – процветала, а вопросы происхождения живых существ были вытеснены за пределы дозволенного. Естественную историю низвели до изучения природы без истории.
Такое «статичное» видение природы не устраивало Дарвина. Он доказывал, что естествоиспытатели должны описывать состояние живого мира с точки зрения причин и следствий – так же, как физики описывают движение мяча по воздуху. Революционный характер гениальности Дарвина придавало умение видеть в природе не свершившийся факт, не данность, а процесс, движение, историю. Эта черта была у них с Менделем общей. Оба страстные натуралисты, Дарвин и Мендель совершили свои научные прорывы, задавшись одним и тем же вопросом, только в разных вариантах: как реализуется «природа»? Вопрос Менделя лежал на условном микроуровне: как отдельный организм передает информацию своему потомству через одно поколение? Вопрос Дарвина переходил на макроуровень: как живые организмы преобразуют информацию о своих чертах через тысячи поколений? Со временем эти ракурсы объединятся, создав основу для глубочайшего понимания человеческой наследственности и для важнейшего синтеза в современной биологии – синтетической теории.
В августе 1831 года[85], спустя два месяца после выпуска из Кембриджа, Дарвин получил письмо от своего наставника Джона Генслоу. Генслоу сообщал, что исследовательской экспедиции в Южную Америку требуется «ученый джентльмен» для помощи в сборе образцов. Дарвин тогда был больше джентльменом, чем ученым (ибо не опубликовал еще ни одной серьезной научной работы), тем не менее он посчитал себя идеальным кандидатом. Чарльз решил отправиться в путешествие на «Бигле» – не как профессиональный естествоиспытатель, но как ученый-стажер, «достаточно квалифицированный, чтобы собирать, наблюдать и замечать всё, достойное упоминания в рамках естественной истории».
«Бигль» отплыл не сразу[86]: штормовые ветра дважды мешали ему. Но 27 декабря 1831 года корабль с 73 моряками и пассажирами на борту наконец снялся с якоря и взял курс на юг, к Тенерифе. В начале января Дарвин уже приближался к Кабо-Верде. Бриг оказался легче, а ветер – коварнее, чем Чарльз ожидал. На борту постоянно ощущалась качка. Дарвин страдал от одиночества, тошноты и обезвоживания, а его жизнь поддерживала вынужденная диета из изюма и хлеба. В тот месяц он начал делать дневниковые записи. Забравшись в гамак, висевший над просоленными картами, Дарвин штудировал книги, которые взял в путешествие: удивительно созвучную его состоянию поэму Мильтона «Потерянный рай» и вышедший между 1830 и 1833 годами труд Чарльза Лайеля «Основные начала геологии»[87].
Особенно впечатлила Дарвина работа Лайеля. Автор «Основных начал геологии» утверждал[88] (для того времени это было радикально), что сложные геологические образования вроде гор и скальных массивов формировались в течение долгого времени, и создала их не рука бога, а медленные природные процессы: эрозия, седиментация и депозиция. Лайель доказывал, что вместо одного грандиозного библейского потопа были миллионы менее масштабных потопов; бог лепил Землю не единичными катаклизмами, а миллионами мелких «насечек». Для Дарвина центральная идея Лайеля – о медленных природных силах, формирующих и трансформирующих земную поверхность, меняющих природу, – стала мощным интеллектуальным толчком. В феврале 1832 года, все еще «страдающий и недовольный», Дарвин достиг Южного полушария. Ветра и течения переменились – его встречал новый мир.
Как и предсказывали его наставники, Дарвин оказался превосходным добытчиком образцов и наблюдателем. «Бигль» двигался вниз вдоль восточного побережья Южной Америки с остановками в Монтевидео, Баия-Бланке, Пуэрто-Десеадо, и повсюду Дарвин прочесывал берега и мелководья заливов, тропические леса и утесы, принося на борт многообразные скелеты, растения, шкуры, камни и раковины – «кучу бесполезного хлама», как выражался недовольный капитан. Новые земли были щедры не только на образцы современных видов, но и на древние окаменелости; Дарвин выкладывал их длинными рядами вдоль палубы, словно организуя экспозицию в музее сравнительной анатомии. В сентябре 1832 года, исследуя серые утесы[89] и глинистые бухты неподалеку от Пунта-Альта, он обнаружил изумительное природное кладбище с окаменевшими костями гигантских вымерших млекопитающих. Он накинулся на челюсть одного из ископаемых, как безумный дантист, выковырял ее и забрал с собой, а на следующей неделе вернулся, чтобы извлечь из кварца огромный череп. Череп принадлежал мегатерию[90], гигантскому древнему ленивцу.
В том месяце среди гальки и каменных глыб Дарвин нашел еще много костей. В ноябре он купил у уругвайского фермера за 18 пенсов обломок громадного черепа другого вымершего млекопитающего – токсодона, который когда-то бродил по равнинам и напоминал носорога с огромными беличьими зубами. «Мне невероятно повезло, – писал Дарвин. – Некоторые млекопитающие просто огромны, и среди них много совершенно незнакомых». Чарльз нашел останки морской свинки размером с обычную свинью, панцирные пластины похожего на танк броненосца и довольно много костей тех слоноподобных ленивцев. Все это он уложил в ящики и отправил в Англию.
«Бигль» обогнул заостренный, по форме напоминающий челюсть архипелаг Огненная Земля и пошел вверх вдоль западного побережья Южной Америки. В 1835 году корабль покинул перуанскую столицу[91] Лиму и взял курс на Галапагосы, одинокую россыпь обугленных вулканических островов западнее Эквадора. По словам капитана, архипелаг представлял собой «мрачные черные груды <…> осколков лавы, формирующих береговую полосу, достойную преисподней». Это была дьявольская версия райского сада: девственный, уединенный, выжженный и скалистый ландшафт с навозоподобными кучами застывшей лавы, кишащими «мерзкими игуанами», черепахами и птицами. Корабль переходил от острова к острову, которых было примерно 18, и везде Дарвин выбирался на берег и карабкался по склонам из пемзы в поисках интересных экземпляров растений, птиц и ящериц. Экипаж выживал благодаря черепашьему мясному ассорти: казалось, что каждый остров предлагал новую разновидность черепах. За пять недель Дарвин пополнил свою коллекцию тушками вьюрков, пересмешников, дроздов, дубоносов, крапивников, альбатросов и игуан, а также рядом морских и наземных растений. Капитан морщился и качал головой.
20 октября корабль снова[92] вышел в открытое море и направился к Таити. Вернувшись в свою каюту, Дарвин приступил к систематическому анализу собранных птичьих тушек. Особенно его удивили пересмешники: их было две или три разновидности, каждая значительно отличалась от других и была эндемична для определенного острова. Тогда Дарвин небрежно нацарапал одно из самых значимых своих научных заключений: «Каждая разновидность привязана к своему острову». Распространялась ли эта закономерность на других животных – скажем, на черепах? Жила ли на каждом острове своя уникальная разновидность? Спохватившись, Чарльз решил выяснить, как обстоит дело с этими рептилиями, но опоздал: участники экспедиции, включая его самого, доели все образцы.
Когда Дарвин после пятилетнего плавания вернулся в Англию, среди естествоиспытателей он уже был в некоторой степени знаменит. Его богатый улов южноамериканских окаменелостей распаковывали, консервировали, каталогизировали и сортировали; находок Дарвина хватило бы не на один музей. Таксидермист и специализирующийся на пернатых художник Джон Гульд взял на себя классификацию птиц. Сам Лайель во время своего президентского обращения к членам Геологического общества продемонстрировал собранные Дарвином образцы. Ричард Оуэн, палеонтолог, который вознесся над всеми английскими естествоиспытателями подобно царственному соколу, спустился с высот Королевского хирургического общества, чтобы самостоятельно изучить и каталогизировать найденные Дарвином ископаемые скелеты.