Таким образом, в современной физике в неинерциальных системах отсчёта наряду с «обычными» силами взаимодействия необходимо учитывать силы инерции, которые Матвеев увязывает с ускоренным движением неинерциальной системы отсчета относительно инерциальной.
«Существование сил инерции обусловливается ускорением движения неинерциальной системы отсчета относительно инерциальной. Силы инерции берутся такими, чтобы обеспечить в неинерциальной системе отсчета те ускорения, которые фактически имеются, но обычными силами взаимодействия объясняются лишь частично».
При этом Матвеев, так же как и Жуковский отмечает, что силы инерции, вводимые в неинерциальных системах отсчета в математической модели теории движения, являются фиктивными силами, т.е. реально несуществующими:
«Введение этих сил в уравнения движения, использование их при объяснении физических явлений и т. д. в неинерциальных системах координат является правильным и необходимым. Однако использование понятия сил инерции при анализе движений в инерциальных системах координат является ошибочным, поскольку в них эти силы отсутствуют».
С точки зрения современной физики, связав неинерциальную систему отсчёта с ускоренно движущимся телом можно, прибавив к нему силу инерции, получить условие равновесия для тела в неинерциальной системе отсчёта. В этом случае ускорение движения тела определяется, как ускорение неинерциальной системы отсчёта относительно инерциальной системы без учета сил инерции. Если же тело движется ещё и относительно неинерциальной системы отсчета, то задача значительно усложняется.
В этом случае абсолютное ускорение будет определяться как сумма относительного ускорения, полученного телом в неинерциальной системе в результате «обычных» взаимодействий и ускорения самой неинерциальной системы отсчёта относительно инерциальной системы отсчета. Силы инерции обуславливают разность между относительным и абсолютным ускорением. При этом сила инерции (Fин) определяется выражением:
Fин = m * (а отн – аабсол)
Несмотря на то, что в современной физике существует четкое математическое выражение для сил инерции, их четкое физическое понимание отсутствует. В результате сила инерции определяется в современной физике как минимум двойственно. С одной стороны в математической модели ускоренного движения тел силы инерции считаются фиктивными, т.е. реально не существующими. С другой стороны существование сил инерции признается многими классиками и современными авторами, как объективная реальность. Вот что говорит Н. Е. Жуковский в упомянутой выше работе (стр. 281) о реальности сил инерции:
«Являясь компонентом предполагаемой силы инерции, центробежная сила есть сила фиктивная; она должна быть присоединена к материальной точке, если мы хотим рассматривать вопрос о ее движении, как об относительном равновесии точки. Но в некоторых вопросах центробежная сила является и как некоторая действительная сила, – например, в вопросах об определении давления движущегося тела на препятствия, стесняющие его движение. Но в этом случае центробежная сила приложена не к материальной точке, а к тем телам, которые задерживают материальную точку на ее траектории.»
Как видите, здесь за силу инерции принимается именно ЦБ сила, которая по 3-му закону Ньютона противодействует ЦС силе. Правда сам 3-ий закон Ньютона здесь не упоминается, но в классической физике ЦБ сила является силой противодействия при ЦС силе именно по 3-му закону Ньютона. При ЦС силе – это значит именно в ИСО.
Жуковский признает физическую реальность действия оказываемого силой инерции, однако в этом случае сила инерции превращается в «обычную» силу, которая приложена к телам, задерживающим движущееся тело на его траектории. А. Н. Матвеев также высказывается за то, что с физической точки зрения силы инерции являются вполне реальными силами (стр. 393):
«Являются ли силы инерции реальными силами? Они реальны в том же смысле, в каком являются реальными ускорения в неинерциальных системах координат, для описания которых они введены. Они реальны также и в более глубоком смысле: при рассмотрении физических явлений в неинерциальных системах можно указать конкретные физические последствия действия сил инерции. Например, в вагоне поезда силы инерции могут привести к увечьям пассажиров, т. е. к весьма реальному и осязаемому результату. Поэтому силы инерции столь же реальны, как реален факт равномерного и прямолинейного движения тел в инерциальных системах координат, если отсутствуют „обычные“ силы взаимодействия, как это формулируется в первом законе Ньютона».
Итак, для удобства математического описания ускоренного движения тел в современной физике в неинерциальных системах отсчета вводятся условные фиктивные силы инерции, которые в инерциальных системах отсчета отсутствуют. Однако системы отсчета это только инструменты для математического описания реальной действительности. Фиктивные силы инерции, вводимые в неинерциальных системах отсчета это по сути дела математическая модель реальных сил, порождаемых инерцией в инерциальных системах отсчета.
При переходе в инерциальную систему отсчета фиктивные силы инерции превращаются в «обычные» силы, приложенные к телам, препятствующим движению тел, связанных с неинерциальной системой отсчета. Происходит по сути дела постоянная подмена понятий вполне реальной «обычной» силы, проявляющейся в инерциальной системе отсчета ее математической моделью – фиктивной силой инерции в неинерциальной системе отсчета и наоборот.
В результате, вполне реальные силы по изменению движения или покоя физических тел, которое приводит к реальным физическим последствиям, обеспечивается в современной физике фиктивными, т.е. несуществующими силами инерции! Двойственность понятия инерции в современной физике проявляется уже с первого же определения Ньютона, которое он дал ещё до своего первого закона:
«Инерция или врожденная сила материи, – это сила сопротивления, с помощью которой каждое тело, в какой бы степени оно ни находилось, пытается сохраниться в своем нынешнем состоянии, будь то в состоянии покоя или равномерного движения вперед по прямой линии».
Такая подмена понятий обычных сил и сил инерции, наблюдается у многих авторов. Приведем дословно цитаты некоторых авторов, касающиеся силы инерции.
Н. Е. Жуковский («Теоретическая механика», издание второе, ГОСУДАРСТВЕННОЕ ИЗДАНИЕ ТЕХНИКО-ТЕОРЕТИЧЕСКОЙ ЛИТЕРАТУРЫ МОСКВА-ЛЕНИНГРАД,1952 г., стр. 281):
«Если, например, некоторый шар М (фиг. 232) движется по цилиндрическому своду, описывая круг, то на него действует сила Р давления свода, которая для шара есть центростремительная. Но по третьему закону динамики шар М сам давит на свод с такой же силой N, равной Р. Эта сила N для шара будет центробежной силой инерции, и можно сказать, что свод находится под действием этой силы».
Как видите, здесь Жуковский открытым текстом говорит, что за силу инерции принимается именно ЦБ сила, которая по 3-му закону Ньютона противодействует ЦС силе в ИСО. Фактически это одна и та же сила взаимодействия. Но у Жуковского она меняет свой статус в зависимости от того, с какой стороны на неё смотреть. Одним боком она обычная сила, а другим – фиктивная сила инерции.
Однако, как может шар, являющийся совместно со сводом источником одной и той же силы, воздействовать на свод с силой, которая для него самого якобы не существует? Как можно производить то, что не существует для самого производителя? Это возможно только при искусственном разделении одной общей для всех силы взаимодействия на две разные силы действия и противодействия по фиктивному 3-му закону Ньютона.
А. Зоммерфельд. Механика. Москва. Ижевск. 2001, Задача 3 к главе II:
«II.3. Центробежная сила при увеличенной скорости вращения Земли.
С какой скоростью должна вращаться Земля (тело на уровне её поверхности) для того, чтобы на экваторе сила тяжести и центробежная сила взаимно уничтожались? Какова была бы при этом продолжительность суток?»
Однако, как можно уничтожить фиктивную центробежную силу инерции, которая и так не существует по причине её фиктивности для тела? Очевидно это можно сделать, только уничтожив вполне реальную общую силу взаимодействия, воздействуя на носители поля тяготения. Это свидетельствует о том, что сила взаимодействия одна, общая для всех взаимодействующих тел.
Ещё одни подобный пример приводит Г. С. Ландсберг. «Элементарный учебник физики», Том 1, ФИЗМАТЛИТ. 2004, стр. 267:
«Вследствие вращения Земли на ней также должна наблюдаться центробежная сила инерции (которой мы до сих пор пренебрегали). В §133 мы нашли, что центростремительное ускорение на экваторе равно 0,034 м/с2. Это составляет примерно 1/300 часть ускорения свободного падения g. Значит, на тело массы т, находящееся на экваторе, действует центробежная сила инерции, равная mg/ЗОО и направленная от центра, т. е. по вертикали вверх. Эта сила уменьшает вес тела по сравнению с силой притяжения Земли на 1/300 часть».
Как и в задаче Зоммерфельда, приведенной выше, для того чтобы вес тела по сравнению с силой притяжения Земли уменьшился на 1/300 часть необходимо уменьшить на эту часть их общую вполне реальную обычную силу взаимодействия, воздействуя на носители тяготения. Но в этой задаче интересно то, что Ландсберг открытым текстом говорит, что сила инерции приложена именно к самому телу, а не к «верёке» тяготения: «Значит, на ТЕЛО массы т, находящееся на экваторе, действует центробежная сила инерции…». Это к вопросу о двойственности. А за силу инерции здесь опять же принимается именно ЦБ сила, которая по 3-му закону Ньютона противодействует ЦС силе в ИСО.
Р. Фейнман, Р. Лейтон, М. Сэндс, ФЕЙНМАНОВСКИЕ ЛЕКЦИИ ПО ФИЗИКЕ, 2. ПРОСТРАНСТВО. ВРЕМЯ. ДВИЖЕНИЕ, стр. 78,79:
«Когда мы держим гантели горизонтально, то никакой работы не производим. Выпрямляя руки в стороны и сгибая их, мы тоже не можем произвести никакой работы. Это, однако, верно только, пока нет никакого вращения! При вращении же НА ГАНТЕЛИ действует центробежная сила. Они стремятся вырваться из наших рук, так что, сгибая во время вращения руки, мы преодолеваем противодействие центробежной силы. Работа, которая на это затрачивается, и составляет разницу в кинетических энергиях вращения. Вот откуда берется этот добавок».
Обратите внимание, что и здесь прослеживается, как минимум словесная путаница. Фейнман чётко указал, что центробежные силы действуют именно на гантели, что противоречит точке приложения фиктивных сил инерции. Это опять же свидетельствует об отсутствии ясного определения силы инерции в современной физике.
Можно привести еще множество примеров двойственного подхода к понятию силы инерции и до бесконечности спорить, о какой системе отсчета идет речь и является ли сила инерции фиктивной или реальной в каждом конкретном случае. Однако однозначный ответ о природе сил инерции у классиков теоретической механики найти вряд ли удастся.
Гулиа Н. В.
Среди современных авторов также нет четкого представления о природе силы инерции, впрочем, как и о природе «обычных» сил. Например, Н. В. Гулиа, являющийся ярым сторонником фиктивности сил инерции независимо от систем отсчета, в которых они рассматриваются в своей книге «Удивительная физика» в главе «Инерция: сила или бессилие?» противореча самому себе, так же дает двойственную оценку силе инерции.
С одной стороны, он категорически отрицает существование силы инерции, причем не только, как математической абстракции, но и как физической реальности. С другой стороны он вынужден, противореча самому себе признавать физическую реальность сил инерции в тех случаях, в которых ее действие невозможно объяснить математической абстракцией. В «Удивительной физике» в главе «Реальны ли центробежные силы?» Гулиа приводит убийственный, по его мнению, пример, подтверждающий именно физическое отсутствие сил инерции в природе:
«Приведем простейший, но, тем не менее, убийственный для этих сил пример. Известно, что Луна вращается вокруг Земли. Спрашивается, действуют ли на нее центробежные силы? Спросите, пожалуйста, об этом своих товарищей, родителей, знакомых. Большинство ответит: «Действуют!» Тогда вы поспорьте с ними, на что хотите и начинайте доказывать, что этого не может быть.
Основных довода – два. Первый: если бы на Луну действовала центробежная сила (то есть сила, направленная от центра вращения наружу), то она могла бы действовать только со стороны Земли, так как других тел поблизости нет. Думаю, что напоминать о том, что силы действуют на тела только со стороны других тел, а не «просто так», уже не надо. А если все так, то, значит, Земля не притягивает, а отталкивает Луну – от себя наружу. Между тем, как мы знаем, существует закон всемирного тяготения, а не отталкивания. Поэтому на Луну может действовать со стороны Земли только одна-единственная сила – притяжения P, направленная точно наоборот – от Луны к Земле. Такая сила называется центростремительной, и она реально есть, она-то и сворачивает Луну с прямолинейного инерционного пути и заставляет вращаться вокруг Земли. А центробежной силы, извините, нет (рис. 54).
Второй довод. Он для тех, кто не знает о существовании закона всемирного тяготения или забыл его. Тогда если бы на Луну действовала центробежная сила (естественно, со стороны Земли, так как других тел, как мы уже знаем, поблизости нет), то Луна не стала бы вращаться вокруг Земли, а улетела бы прочь. Если на Луну не действовало бы вообще никаких сил, то она спокойно пролетела бы мимо Земли по инерции, то есть по прямой (мы же забыли о всемирном тяготении!). А если бы со стороны Земли на Луну действовала центробежная сила, то Луна, подлетая к Земле, свернула бы в сторону и под действием этой силы улетела бы навсегда в космическое пространство. Только бы мы ее и видели! Но раз этого не происходит, стало быть, центробежной силы нет. Вы выиграли спор, причем в любом случае. А появилась эта центробежная сила оттуда же, откуда и силы инерции в прямолинейном движении – из принципа Даламбера. Здесь, во вращательном движении, этот принцип еще более облегчает решение задач, чем в прямолинейном. Еще бы, прикладываем к существующей центростремительной силе несуществующую центробежную – и Луна как бы зависает на месте! Делайте с ней, что хотите, определяйте ускорения, скорости, радиусы орбиты, периоды обращения и все остальное. Хотя все это можно определить и без использования принципа Даламбера».
Наш взгляд, доводы Гулиа не только абсолютно не корректны с точки зрения физики, они просто по-детски наивны. Гулиа совершенно прав напоминая,
«… что силы действуют на тела только со стороны других тел, а не „просто так“…».
Поэтому ему, профессору физики, а вовсе не ребёнку следовало бы знать, что сила притяжения тоже существует «не «просто так»…», ведь прямого контакта между Землей и Луной нет. Следовательно, сила тяготения осуществляется через что-то материальное вокруг Луны и Земли, даже если обтекаемо назвать это что-то просто поле тяготения!
А поскольку небесные тела реально подталкивает друг к другу вполне материальное поле тяготения, но при этом они не падают друг на друга, то надо полагать, что они сопротивляются ему при помощи вполне реальной центробежной силы. И направлена эта реальная центробежная сила вовсе не со стороны Земли на Луну, а со стороны Луны на материальное поле тяготения. Причём в этом участвует каждый элемент Луны. При этом каждый действует на каждого, т.е. эта сила вовсе не формально действует и на элементы самой Луны, поддерживая её движение прочь от Земли.
Далее Гулиа сам вступает в противоречие со своей собственной же позицией:
«Но ради справедливости заметим все-таки, что центробежные или просто направленные от центра силы все-таки бывают, но действуют они вовсе не на то тело, которое вращается, а на связь, удерживающую это тело (рис. 57). То есть не на автомобиль, а на дорогу, не на Луну, а на Землю, не на камень в праще, а на веревку и руку человека и т. д.»
Вот только Гулиа почему-то забыл, что между Землёй и Луной также есть некая «верёвка» тяготения, на которую по его же словам и должны быть направлены центробежные силы Луны. Следовательно, источником НЕ фиктивной, а вполне реальной центробежной силы является сама Луна. Но силы, зарождающиеся внутри Луны, не могут не действовать, прежде всего, на элементы самой Луны.
Ближайшие к Земле элементы Луны, удерживаемые силой тяготения Земли в первую очередь, поддерживают своё движение прочь от Земли за счёт более удаленных элементов Луны. Эти взаимодействия последовательно распространяются на всё тело Луны, т.е. реальные силы инерции Луны действуют не только на «верёвку» тяготения, но на саму Луну изнутри. Это и есть механизм поддержки движения за счет вполне реальных сил инерции поэлементной поддержки (см. ниже).
При математическом моделировании физических взаимодействий современная физика рассматривает физические тела как материальные точки. Это, так же как и принцип Даламбера значительно облегчает математическое описание физических процессов. Однако некоторые профессора вроде Гулиа пытаются делать физику из математики. Конечно же, материальная точка не может действовать «сама на себя». Именно из этого и вытекает классическая фиктивность сил инерции. Однако физическому телу абсолютно все равно за что его принимает современная наука.
Силы инерции зарождаются, прежде всего, внутри каждого физического тела и распространяются по всему его объему, а уже затем передаются другим телам, которые им препятствуют. Причём даже самые упертые профессора вроде Гулиа, хотя бы «ради справедливости» иногда все-таки признают реальность сил инерции. Так что если вы поверили Гулиа, который втянул вас в этот спор и проиграли крупную сумму, то все претензии к нему. Выходит, его физика потому и удивительная, что это и не физика вовсе, а математическая абстракция.
В статье «Алфизики ХХ века» Н. Гулиа пишет:
«Силы инерции – это всего лишь математический прием, но тогда я верил, что они существуют реально и даже могут совершать работу. И предложил „центробежный“ инерцоид».
В этой цитате Гулиа недвусмысленно опять отрицает реальность сил инерции и соответственно возможность совершения ими какой-либо работы. Сначала Н. В. Гулиа был ярым сторонником инерцоидов, т.е. устройств, движущихся без опоры на окружающую материальную среду. После изучения классической механики, Гулиа стал таким же ярым их противником, считая, что силы инерции нереальны и, следовательно, не способны производить реальные действия:
«Сейчас мне стыдно, что, уже окончив институт, я думал, что центробежные силы реальны и могут действовать на грузы, совершая работу. Но, увы, именно так думает множество людей, имеющих дело с техникой, даже инженеры и некоторые ученые, ничуть не задумываясь над тем, что их представления в принципе неверны. Как заметил Т. Эдисон, к сожалению, большинство людей предпочитают безмерно трудиться, вместо того чтобы немного подумать».
Изучив теоретическую механику Гулиа, полагает, что приобрел верные представления о явлении инерции, хотя, как известно природа инерции на сегодняшний день не установлена и поэтому исчерпывающих сведений об инерции в современной теоретической механике Гулиа при всем его желании, тяге и таланте к учению почерпнуть никак не мог. Тем не менее, Гулиа считает («Алфизики ХХ века»), что теперь он свободно ориентируется в лабиринтах теоретической механики, читай в вопросах инерции:
«Теперь, став профессором механики, я довольно свободно ориентируюсь в тех лабиринтах, куда попадают по своей воле создатели инерцоидов. Мне особенно близки и понятны эти ситуации, ибо я не забыл еще, как сам в них оказывался. И я хочу рассказать читателям правду об инерцоидах, почему они движутся по реальным поверхностям и не могут двигаться без опоры и как самому посредством несложного опыта убедиться в этом».
Еще раз адресуем уже «немного подумавшему» Гулиа тот же вопрос, так, в чем же все-таки заключается реальная справедливость, в том, что силы инерции есть, хотя бы ради справедливости или они не существуют? Свободно ориентироваться в лабиринтах существующей теоретической механики вовсе не означает свободно ориентироваться в реальной действительности, это несколько разные вещи. Ниже будет показано, что поскольку процесс взаимодействияэтои есть процесс явления инерции, то абсолютно все силы по своему происхождению являются силами инерции.
В книге «Удивительная физика» в главе «Кто стоял на плечах гигантов?» Гулиа отмечает, что суть понятия инерции отражена в первом законе Ньютона:
«К сожалению, многие из нас часто неправильно толкуют термин „по инерции“. По инерции крутится маховик, по инерции я ударился лбом о стекло, когда автомобиль затормозил… Все это бытовые понятия инерции. Строгое же только то, которое определяется первым законом Ньютона. Который до него, может, не так точно, но сформулировал… нет, не Галилей – Декарт!»
Причем Гулиа считает определение великого Ньютона неточным, т.к. по его мнению, не то движение считается движением по инерции, в котором отсутствуют «обычные» силы взаимодействия, т.е. отсутствуют какие-либо взаимодействия с другими телами, а то в котором все силы, действующие на тело, скомпенсированы.
Гулиа пишет:
«Возьмем первый закон Ньютона (это тот, который иногда несправедливо приписывают Галилею). Сам Ньютон сформулировал его очень уж мудрено, как, кстати, и во многих школьных учебниках. Автор полагает, что более кратко и проще всего говорить так: «Тело пребывает в покое или движется равномерно и прямолинейно, если равнодействующая внешних сил, приложенных к нему, равна нулю». Вроде бы и придраться тут не к чему. А то пишут в некоторых учебниках: «…если на тело не действуют силы или другие тела…». Неточно это,…»
Но в чём здесь собственно разница? С точки зрения физики никаких неточностей в классической формулировке первого закона Ньютона нет. Если тело испытывает реальные «внешние» воздействия внутри себя и при этом продолжает двигаться равномерно и прямолинейно, то это означает, что другие тела, вызывающие эти воздействия движутся синхронно вместе с этим телом, т.е. являются частью одной замкнутой системы. Следовательно, это внутренние взаимодействия замкнутой системы, равнодействующая сила которых естественно равна нулю.
Не соответствует действительности так же и утверждение Гулиа о том, что строгое понятие инерции «определяется первым законом Ньютона». В формулировке первого закона Ньютона, данной классиком, ни слова не говорится об инерции. Не встречается определение инерции и в формулировке первого закона динамики, данной самим Гулиа. Более того, в первом законе Ньютона внешние силы отсутствуют. Следовательно, в нём не могут проявляться и ответные силы инерционного противодействия, т.к. в отсутствие внешних сил противодействовать собственно и нечему! Поэтому называть первый закон Ньютона законом инерции нет никаких оснований не только по тексту его формулировки, но и по смыслу.
Правда, Гулиа считает силы инерции фиктивными, т.е. несуществующими. Однако никто не отменял третий закон Ньютона (мы это сделаем в следующей главе 1.2.), в соответствии с которым даже фиктивные силы инерции появляются только как реакция на обычные внешние силы, которых в первом законе Ньютона нет. В «Удивительной физике» в главе «Инерция: сила или бессилие?» Гулиа приводит слова Ньютона, которые, по его мнению, определяют смысл сил инерции, как несуществующих сил:
«Врожденная сила материи – есть присущая ей способность сопротивления, по которому всякое отдельно взятое тело удерживает свое состояние покоя или равномерного прямолинейного движения».
Гулиа утверждает, что термин «сила» в приведенном высказывании Ньютона употреблен ошибочно, и эту ошибку впоследствии исправил сам Ньютон, а раз так, то сил инерции по Ньютону не существует. Вот, что говорит сам Гулиа по этому поводу:
«Что же это такое – врожденная сила материи, которую сам Ньютон позже назвал „силой инерции“? Да это же просто инерция, не „сила“, а фундаментальное свойство материи. Раньше, во времена Ньютона, все, что угодно, любили называть „силой“: „сила движения“, „сила убеждения“, „сила любви“, наконец. Тем более сам Ньютон потом поясняет, что термин „сила“ может быть растолкован как „свойство“. Итак, „силы инерции“ по Ньютону – совсем не силы».