banner banner banner
Глоссариум по искусственному интеллекту и информационным технологиям
Глоссариум по искусственному интеллекту и информационным технологиям
Оценить:
 Рейтинг: 0

Глоссариум по искусственному интеллекту и информационным технологиям


Ссылки на первоисточники проставлены у оригинальных терминов и определений (т.е. если определение изначально было на английском языке из иностранного источника, то ссылка указывается возле него. Ссылка на тоже определение, переведенное или адаптированное на русский в этом издании не указывается. Это сделано с тем, чтобы не дублировать ссылки, не перегружать текст, не тратить, так сказать, бумагу, путая читателя).

Также, хочу сделать небольшое отступление и проинформировать уважаемого читателя о том, что эта книга является личным проектом автора и абсолютно свободным к распространению документом. Вы можете использовать эту книгу по-своему усмотрению, но ссылка на нее обязательна.

Буду Вам благодарен за любые отзывы, предложения и уточнения. Направляйте их, пожалуйста, на aleksander.chesalov@yandex.ru

Подробно ознакомиться с моей работой и моими проектами в области цифровой экономики, искусственного интеллекта и создания различных ИТ-решений и систем Вы можете на моем персональном сайте chesalov.com.

Приятного Вам чтения и продуктивной работы!

Ваш, Александр Чесалов.

25.12.2021. Издание первое. 400 терминов.

27.06.2022. Издание второе. Дополнено до 1000 терминов.

29.04.2023. Издание третье. Дополнено. Корректировка ссылок.

КРАТКИЙ СЛОВАРЬ ПО ИСКУССТВЕННОМУ ИНТЕЛЛЕКТУ И ИНФОРМАЦИОННЫМ ТЕХНОЛОГИЯМ

«А»

Автоассоциативная память (Auto Associative Memory) – это однослойная нейронная сеть, в которой входной обучающий вектор и выходные целевые векторы совпадают. Веса определяются таким образом, чтобы сеть хранила набор шаблонов. Как показано на следующем рисунке, архитектура сети автоассоциативной памяти имеет «n» количество входных обучающих векторов и аналогичное «n» количество выходных целевых векторов[9 - .Auto Associative Memory [Электронный ресурс] www.tutorialspoint.com URL: https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_associate_memory.htm#:~:text=These%20kinds%20of%20neural%20networks,with%20the%20given%20input%20pattern (https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_associate_memory.htm#:~:text=These%20kinds%20of%20neural%20networks,with%20the%20given%20input%20pattern). (дата обращения: 07.07.2022)].

Автоматизация (Automation) – это технология, с помощью которой процесс или процедура выполняется с минимальным участием человека.

Автоматизированная обработка персональных данных (Automated processing of personal data) – это обработка персональных данных с помощью средств вычислительной техники.

Автоматизированная система (Automated system) – это организационно-техническая система, которая гарантирует выработку решений, основанных на автоматизации информационных процессов во всевозможных отраслях деятельности.

Автоматизированная система управления (Automated control system) – это комплекс программных и программно-аппаратных средств, предназначенных для контроля за технологическим и (или) производственным оборудованием (исполнительными устройствами) и производимыми ими процессами, а также для управления такими оборудованием и процессами.

Автономное транспортное средство (Autonomous vehicle) – это вид транспорта, основанный на автономной системе управления. Управление автономным транспортным средством полностью автоматизировано и осуществляется без водителя при помощи оптических датчиков, радиолокации и компьютерных алгоритмов.

Автономные вычисления (Autonomic computing) – это способность системы к адаптивному самоуправлению собственными ресурсами для высокоуровневых вычислительных функций без ввода данных пользователем.

Автономный искусственный интеллект (Autonomous artificial intelligence) – это биологически инспирированная система, которая пытается воспроизвести устройство мозга, принципы его действия со всеми вытекающими отсюда свойствами.

Адаптивная система (Adaptive system) – это система, которая автоматически изменяет данные алгоритма своего функционирования и (иногда) свою структуру для поддержания или достижения оптимального состояния при изменении внешних условий.

Аддитивные технологии (Additive technologies) – это технологии послойного создания трехмерных объектов на основе их цифровых моделей («двойников»), позволяющие изготавливать изделия сложных геометрических форм и профилей.

Активное обучение/Стратегия активного обучения (Active Learning/Active Learning Strategy) – это особый способ полу управляемого машинного обучения, в котором обучающий агент может в интерактивном режиме запрашивать оракула для получения меток в новых точках данных. Подход к такому обучению основывается на самостоятельном выборе алгоритма некоторых данных из массы тех, на которых он учится. Активное обучение особенно ценно, когда помеченных примеров мало или их получение слишком затратно. Вместо слепого поиска разнообразных помеченных примеров алгоритм активного обучения выборочно ищет конкретный набор примеров, необходимых для обучения.

Алгоритм (Algorithm) – это точное предписание о выполнении в определенном порядке системы операций для решения любой задачи из некоторого данного класса (множества) задач. Термин «алгоритм» происходит от имени узбекского математика Мусы аль-Хорезми, который еще в 9 веке (ок. 820 г. н.э.) предложил простейшие арифметические алгоритмы. В математике и кибернетике класс задач определенного типа считается решенным, когда для ее решения установлен алгоритм. Нахождение алгоритмов является естественной целью человека при решении им разнообразных классов задач. Также, алгоритм – это набор правил или инструкций, данных ИИ, нейронной сети или другим машинам, чтобы помочь им учиться самостоятельно; классификация, кластеризация, рекомендация и регрессия – четыре самых популярных типа.

Алгоритм Q-обучения (Q-learning) – это алгоритм обучения, основанный на ценностях. Алгоритмы на основе значений обновляют функцию значений на основе уравнения (в частности, уравнения Беллмана). В то время как другой тип, основанный на политике, оценивает функцию ценности с помощью жадной политики, полученной из последнего улучшения политики. Табличное Q-обучение (при обучении с подкреплением) представляет собой реализацию Q-обучения с использованием таблицы для хранения Q-функций для каждой комбинации состояния и действия. «Q» в Q-learning означает качество. Качество здесь показывает, насколько полезно данное действие для получения вознаграждения в будущем[10 - .Q-learning [Электронный ресурс] //towardsdatascience.com URL: https://towardsdatascience.com/a-beginners-guide-to-q-learning-c3e2a30a653c (https://towardsdatascience.com/a-beginners-guide-to-q-learning-c3e2a30a653c) (дата обращения: 07.07.2022)].

Алгоритм любого времени (Anytime algorithm) – это алгоритм, который может дать частичный ответ, качество которого зависит от объема вычислений, которые он смог выполнить. Ответ, генерируемый алгоритмами anytime, является приближенным к правильному. Большинство алгоритмов выполняются до конца: они дают единственный ответ после выполнения некоторого фиксированного объема вычислений. Однако в некоторых случаях пользователь может захотеть завершить алгоритм до его завершения. Эта особенность алгоритмов anytime моделируется такой теоретической конструкцией, как предельная машина Тьюринга (Бургин, 1992; 2005)[11 - Anytime algorithm [Электронный ресурс] // dic.academic.ru URL: https://dic.academic.ru/dic.nsf/eng_rus/423258/anytime (https://dic.academic.ru/dic.nsf/eng_rus/423258/anytime) (дата обращения: 27.01.2022)].

Алгоритмическая оценка (Algorithmic Assessment) – это техническая оценка, которая помогает выявлять и устранять потенциальные риски и непредвиденные последствия использования систем искусственного интеллекта, чтобы вызвать доверие и создать поддерживающие системы вокруг принятия решений ИИ.

Алгоритмическая предвзятость (Biased algorithm) – это систематические и повторяющиеся ошибки в компьютерной системе, которые приводят к несправедливым результатам, например, привилегия одной произвольной группы пользователей над другими.

Алгоритмы машинного обучения (Machine learning algorithms) – это фрагменты кода, которые помогают пользователям исследовать и анализировать сложные наборы данных и находить в них смысл или закономерность. Каждый алгоритм – это конечный набор однозначных пошаговых инструкций, которые компьютер может выполнять для достижения определенной цели. В модели машинного обучения цель заключается в том, чтобы установить или обнаружить закономерности, с помощью которых пользователи могут создавать прогнозы либо классифицировать информацию. В алгоритмах машинного обучения используются параметры, основанные на учебных данных (подмножество данных, представляющее более широкий набор). При расширении учебных данных для более реалистичного представления мира с помощью алгоритма вычисляются более точные результаты. В различных алгоритмах применяются разные способы анализа данных. Они часто группируются по методам машинного обучения, в рамках которых используются: контролируемое обучение, неконтролируемое обучение и обучение с подкреплением. В наиболее популярных алгоритмах для прогнозирования целевых категорий, поиска необычных точек данных, прогнозирования значений и обнаружения сходства используются регрессия и классификация[12 - .Алгоритмы машинного обучения [Электронный ресурс] //azure.microsoft.com URL: https://azure.microsoft.com/ru-ru/overview/machine-learning-algorithms/#overview (https://azure.microsoft.com/ru-ru/overview/machine-learning-algorithms/#overview) (дата обращения: 07.07.2022)].

Анализ временных рядов (Time series analysis) – это раздел машинного обучения и статистики, который анализирует временные данные. Многие типы задач машинного обучения требуют анализа временных рядов, включая классификацию, кластеризацию, прогнозирование и обнаружение аномалий. Например, вы можете использовать анализ временных рядов, чтобы спрогнозировать будущие продажи зимних пальто по месяцам на основе исторических данных о продажах.

Аналитика больших данных – это методы, инструменты и приложения, которые используются для сбора и обработки больших наборов разнородных, быстро создаваемых данных и извлечения из них ценной информации. Эти данные могут поступать из самых разных источников: браузеров, мобильных приложений, электронной почты, социальных сетей и интеллектуальных сетевых устройств. Зачастую они генерируются с высокой скоростью и не обладают строго определенной формой: они могут быть полностью структурированными (таблицы баз данных или электронные таблицы Excel), частично структурированными (XML-файлы, веб-страницы) и неструктурированными (изображения, аудиофайлы)[13 - .Big Data: перспективы развития, тренды и объемы рынка больших данных [Электронный ресурс] delprof.ru URL: https://delprof.ru/press-center/open-analytics/big-data-perspektivy-razvitiya-trendy-i-obemy-rynka-bolshikh-dannykh/ (дата обращения: 29.04.2023)],[14 - .Что такое аналитика больших данных? [Электронный ресурс] azure.microsoft.com URL: https://azure.microsoft.com/ru-ru/resources/cloud-computing-dictionary/what-is-big-data-analytics (дата обращения: 29.04.2023)].

Аналитика принятия решений (Decision intelligence) – это практическая дисциплина, используемая для улучшения процесса принятия решений путем четкого понимания и программной разработки того, как принимаются решения, и как итоговые результаты оцениваются, управляются и улучшаются с помощью обратной связи.

Аппаратное обеспечение (Hardware) – это система взаимосвязанных технических устройств, предназначенных для ввода (вывода), обработки и хранения данных.

Аппаратное обеспечение ИИ (AI hardware, AI-enabled hardware, AI hardware platform) – это аппаратное обеспечение ИИ, аппаратные средства ИИ, аппаратная часть инфраструктуры или системы искусственного интеллекта, ИИ-инфраструктуры.

Аппаратно-программный комплекс (Hardware-software complex) – это набор технических и программных средств, работающих совместно для выполнения одной или нескольких сходных задач.

Аппаратный акселератор (Hardware accelerator) – это устройство, выполняющее некоторый ограниченный набор функций для повышения производительности всей системы или отдельной её подсистемы. Например, purpose-built hardware accelerator – специализированный аппаратный ускоритель.

Аппаратный Сервер (аппаратное обеспечение) (Hardware Server) – это выделенный или специализированный компьютер для выполнения сервисного программного обеспечения (в том числе серверов тех или иных задач) без непосредственного участия человека. Одновременное использование как высокопроизводительных процессоров, так и FPGA позволяет обрабатывать сложные гибридные приложения.

Архитектура вычислительной машины (Architecture of a computer) – это концептуальная структура вычислительной машины, определяющая проведение обработки информации и включающая методы преобразования информации в данные и принципы взаимодействия технических средств и программного обеспечения.

Архитектура вычислительной системы(Architecture of a computing system) – это конфигурация, состав и принципы взаимодействия (включая обмен данными) элементов вычислительной системы.

Архитектура механизма обработки матриц (MPE)(Matrix Processing Engine Architecture) – это многомерный массив обработки физических матриц цифровых устройств с умножением (MAC), который вычисляет серию матричных операций сверточной нейронной сети.

Архитектура системы (Architecture of a system) – это принципиальная организация системы, воплощенная в её элементах, их взаимоотношениях друг с другом и со средой, а также принципы, направляющие её проектирование и эволюцию.

Архитектура фон Неймана (модель фон Неймана, Принстонская архитектура) (Von Neumann architecture) – это широко известный принцип совместного хранения команд и данных в памяти компьютера. Вычислительные машины такого рода часто обозначают термином «машина фон Неймана», однако соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают принцип хранения данных и инструкций в одной памяти[15 - .Архитектура фон Неймана [Электронный ресурс] //en.wikipedia.org URL: https://en.wikipedia.org/wiki/Von_Neumann_architecture (https://en.wikipedia.org/wiki/Von_Neumann_architecture) (дата обращения: 07.07.2022)].

Архитектурная группа описаний (Architectural description group, Architectural view) – это представление системы в целом с точки зрения связанного набора интересов.

Архитектурный фреймворк (Architectural frameworks) – это высокоуровневые описания организации как системы; они охватывают структуру его основных компонентов на разных уровнях, взаимосвязи между этими компонентами и принципы, определяющие их эволюцию[16 - .Architectural frameworks [Электронный ресурс] //implementationscience.biomedcentral.com URL: https://implementationscience.biomedcentral.com/articles/10.1186/s13012-017-0607-7#:~:text=Architectural%20frameworks%20are%20high%2Dlevel,principles%20that%20guide%20their%20evolution (https://implementationscience.biomedcentral.com/articles/10.1186/s13012-017-0607-7#:~:text=Architectural%20frameworks%20are%20high%2Dlevel,principles%20that%20guide%20their%20evolution). (дата обращения: 07.07.2022)].

Асинхронные межкристальные протоколы (Asynchronous inter-chip protocols) – это протоколы для обмена данных в низкоскоростных устройствах; для управления обменом данными используются не кадры, а отдельные символы.

Ассоциация по развитию искусственного интеллекта (Association for the Advancement of Artificial Intelligence) – это международное научное сообщество, занимающееся продвижением исследований и ответственным использованием искусственного интеллекта. AAAI также стремится повысить общественное понимание искусственного интеллекта (ИИ), улучшить обучение и подготовку специалистов, занимающихся ИИ, и предоставить рекомендации для планировщиков исследований и спонсоров относительно важности и потенциала текущих разработок ИИ и будущих направлений.

«Б»

Байесовский классификатор в машинном обучении (Bayesian classifier in machine learning) – это семейство простых вероятностных классификаторов, основанных на использовании теоремы Байеса и «наивном» предположении о независимости признаков классифицируемых объектов. Анализ на основе байесовской классификации активно изучался и использовался начиная с 1950-х годов в области классификации документов, где в качестве признаков использовались частоты слов. Алгоритм является масштабируемым по числу признаков, а по точности сопоставим с другими популярными методами, такими как машины опорных векторов. Как и любой классификатор, байесовский присваивает метки классов наблюдениям, представленным векторами признаков. При этом предполагается, что каждый признак независимо влияет на вероятность принадлежности наблюдения к классу. Например, объект можно считать яблоком, если он имеет округлую форму, красный цвет и диаметр около 10 см. Наивный байесовский классификатор «считает», что каждый из этих признаков независимо влияет на вероятность того, что этот объект является яблоком, независимо от любых возможных корреляций между характеристиками цвета, формы и размера. Простой байесовский классификатор строится на основе обучения с учителем. Несмотря на мало реалистичное предположение о независимости признаков, простые байесовские классификаторы хорошо зарекомендовали себя при решении многих практических задач. Дополнительным преимуществом метода является небольшое число примеров, необходимых для обучения[17 - .Байесовский классификатор в машинном обучении [Электронный ресурс] //wiki.loginom.ru URL: https://wiki.loginom.ru/articles/bayesian_classifier.html (https://wiki.loginom.ru/articles/bayesian_classifier.html) (дата обращения: 07.07.2022)].

Башня (Tower) – это компонент глубокой нейронной сети, которая сама по себе является глубокой нейронной сетью без выходного слоя. Как правило, каждая башня считывает данные из независимого источника. Башни независимы до тех пор, пока их выходные данные не будут объединены в последнем слое.

Безопасность критической информационной инфраструктуры (Security of a critical information infrastructure) – это состояние защищенности критической информационной инфраструктуры, обеспечивающее ее устойчивое функционирование при проведении в отношении ее компьютерных атак.

Бенчмаркинг(Benchmarking) – это набор методик, которые позволяют изучить опыт конкурентов и внедрить лучшие практики в своей компании.