Все науки. №3, 2023
Международный научный журнал
Авторы: Алиев Ибратжон Хатамович, Абдурахмонов Султонали Мукарамович, Одилов Санжар Садикжанович, Тойиров Нурмухаммад Султоналиевич, Обидов Фозилжон Орипович, Абдусалямова Тоира
Главный редактор Ибратжон Хатамович Алиев
Иллюстратор Ибратжон Хатамович Алиев
Иллюстратор Оббозжон Хокимович Кулдашов
Иллюстратор Султонали Мукарамович Абдурахмонов
Дизайнер обложки Ибратжон Хатамович Алиев
Дизайнер обложки Раънохон Мукарамовна Алиева
И. О. Научного руководителя Султонали Мукарамович Абдурахмонов
Экономический руководитель Фаррух Муроджонович Шарофутдинов
Экономический консультант Ботирали Рустамович Жалолов
Корректор Гульноза Мухтаровна Собирова
Корректор Абдурасул Абдусолиевич Эргашев
Корректор Екатерина Александровна Вавилова
© Ибратжон Хатамович Алиев, 2023
© Султонали Мукарамович Абдурахмонов, 2023
© Санжар Садикжанович Одилов, 2023
© Нурмухаммад Султоналиевич Тойиров, 2023
© Фозилжон Орипович Обидов, 2023
© Тоира Абдусалямова, 2023
© Ибратжон Хатамович Алиев, иллюстрации, 2023
© Оббозжон Хокимович Кулдашов, иллюстрации, 2023
© Султонали Мукарамович Абдурахмонов, иллюстрации, 2023
ISBN 978-5-0059-9431-8 (т. 3)
ISBN 978-5-0059-5898-3
Создано в интеллектуальной издательской системе Ridero
ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ
ВАЖНОСТЬ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПРИ ИЗУЧЕНИИ ОБЩИХ ЗАКОНОМЕРНОСТЕЙ И ПРОСТЕЙШИЕ СЛУЧАИ ПРЕОБРАЗОВАНИЯ
Алиев Ибратжон Хатамович
Студент 2 курса факультета математики-информатики Ферганского государственного университета
Ферганский государственный университет, Фергана, Узбекистан
Аннотация. Изучение окружающего мира непосредственно сводит к необходимости ведения тех или иных прогнозов, которые сводятся уже к важности установления для них основных законов мироздания, которые можно наблюдать в ходе изучения тех или иных явлений. При этом часто использование физических законов, возможные для описания с использованием не только обычных уравнений, но и дифференциальных уравнений, первого и вторых порядков, в том числе и большого количества уравнений в частных производных, довольно часто используемых при этом исследовании и понимании.
Ключевые слова: дифференциальные уравнений в частных производных, обыкновенные дифференциальные уравнения, математическое моделирование, аналогия, закономерности.
Annotation. The study of the surrounding world directly reduces to the need to make certain forecasts, which are already reduced to the importance of establishing for them the basic laws of the universe, which can be observed during the study of certain phenomena. At the same time, there is often the use of physical laws that are possible to describe using not only ordinary equations, but also differential equations of the first and second orders, including a large number of partial differential equations, quite often used in this study and understanding.
Keywords: partial differential equations, ordinary differential equations, mathematical modeling, analogy, regularities.
Приходя к изучению законов мира в физической науке чаще всего выделялись те или иные законы, первоначальными среди которых являются именно механические закономерности, созданные Ньютоном и разработанные в математическом плане с его же стороны, наряду с другими учёными, среди коих ярко выделяется фигура Лейбница. Для примера настоящего утверждения можно привести дифференциальные формы основных уравнений движения (1), которые в свою очередь сводятся до определённых значений в формулах ускорения (2), силы (3), работы (4), мощности (5) и прочих.
Настоящие моменты понимания могут чаще всего рассматриваться именно в дифференциальных формах значения, по той причине, что они могут быть численно определены благодаря вводу некоторых преобразований, а именно благодаря преобразованию (6) и взятию определённого интеграла с установлением определённых границ (7).
Подобные направленности развиты не только в механическом плане, но и в других разделах физики, ярким тому примером может случить электростатика, электродинамика, магнитостатика, магнето-динамика и прочие. Для доказательства этого достаточно лишь упомянуть, что само понятие силы тока является производным по времени заряда, а напряжение – производное по заряду работы.
Настоящее утверждение можно привести для большого числа самых различных пониманий, но важен тот факт, что подобный подход в отличие от классического математического регулирования, становиться единственным при необходимости описания гравитационных характеристик пространства в масштабах всего пространства. Примером подобного рода явлений, где использование производных и соответственно дифференциальных уравнений становится известная квантовая физика.
Однако, в масштабе явлений, где классический математический аппарат уже не может выполнять свои функции, важными являются не сколько обычные классические производные, сводимые к обыкновенным дифференциальным уравнениям, если, конечно, не учитывать простейшие случае, ярким примером для коих можно привести преодоление потенциальной ямы частицы или описание её движения, либо другие подобные тривиальные случаи, интересными являются в большей мере лишь уравнения в частных производных.
Использованная литература
1. Потрягин Л. С. Обыкновенные дифференциальные уравнения. – М.: Наука, 1974.
2. Тихонов А. Н., Самарский А. А. Уравнения математической физики. – М.: Наука, 1972.
3. Тихонов А. Н., Васильева А. Б., Свешников А. Г. Дифференциальные уравнения. – 4-е изд. – Фзиматлит, 2005.
4. Умнов А. Е., Умнов Е. А. Основы теории дифференциальных уравнений. – Изд. 2-е. – 2007. – 240 с.
5. Чарльз Генри Эдвардс, Дэвид Э. Пенни. Дифференциальные уравнения и проблема собственных значений: моделирование и вычисление с помощью Mathematica, Maple и MATLAB = Differential Equations and Boundary Value Problems: Computing and Modeling. – 3-е изд. – М.: «Вильямс», 2007.
6. Эльсгольц Л. Э. Дифференциальные уравнения и вариационное исчисление. – М.: Наука, 1969.
НЕКОТОРЫЕ ОПЕРАЦИИ И ЧАСТНЫЕ СЛУЧАИ МАТЕМАТИЧЕСКОГО АНАЛИЗА В ИНГЕНЦИАЛЬНОМ МНОЖЕСТВЕ
Алиев Ибратжон Хатамович
Студент 2 курса факультета математики-информатики Ферганского государственного университета
Ферганский государственный университет, Фергана, Узбекистан
Аннотация. Важность определения и преобразования ингенциальных чисел и настоящего множества с каждым днём становится всё более очевидном, особенно с входом данного понятия в математическую физику, но и как чисто математический объект они представляют не малый интерес, хотя при этом имеют и практическое применение. В настоящей работе, описаны методы проведения некоторых алгебраических операций с ними, в том числе с использованием формулы Эйлера и интеграллами.
Ключевые слова: ингенциальные числа, математический анализ, алгебраические операции, формула Эйлера, интегрирование, производные.
Annotation. The importance of defining and converting exponential numbers and a real set is becoming more and more obvious every day, especially with the entry of this concept into mathematical physics, but as a purely mathematical object they are of no small interest, although they also have practical applications. In this paper, methods of performing some algebraic operations with them are described, including using Euler’s formula and integrals.
Keywords: inertial numbers, mathematical analysis, algebraic operations, Euler formula, integration, derivatives.
Сам процесс логарифмирования ингенциального числа общего вида, можно видеть в (1).
Таким образом, при логарифмировании, образуются 2 части самого выражения – действительная, как натуральный логарифм от коэффициента ингенциальной части и логарифм от ингенциальной единицы, которая определяется в (2).
То есть имеется в этом случае возникает вопрос, в какую степень необходимо возвести число Эйлера, чтобы она выдало ингенциальную единицу. Ответ довольно прост – это отрицательный логарифм от нуля (2) из этого следует, что логарифм от ингенциального числа составляет (3).
Также интересно решение уравнения Эйлера с ингенциальной единицей, а после и с общим видом ингенциального числа, что и описывалось далее, приняв выражения как неизвестные. И для этого изначально можно исходить из разложений Тейлора (4—6).
Что легко доказывается, поскольку при обнулении неизвестной синус в (5) также обнуляется, а косинус в (6) равняется единице. И уже из этого вытекает (7).
И неизвестным в (7) могут быть все возможные числа, как комплексные, при подстановке которых вытекает замечательное равенство Эйлера, так и ингенциальные. И для начала, рассмотрим частный случай, с ингенциальной единицей и произведём следующие преобразования (8).
Исходя из этого соотношения выполняем преобразования в (9), приведя к уравнению (10), при этом учитывая, что это выражение является тождественным возможно дифференцировать обе части уравнения в (11), выполнив соответствующие преобразования.
Поскольку завершающее равенство (11) можно представить как в (12), далее проведя дополнительное дифференцирование, также вводя условие, что это тождество, а в (13) подробно расписан процесс дифференцирования для правой стороны равенства. А для левой же части нет необходимости в подробной росписи.
Когда дифференцирование произведено, достаточно произвести элементарные преобразования, получив тригонометрический вид частного случая (14).
Теперь же, когда получен общий вид для дважды дифференцированного случая, необходимо вернуться к первообразным, ибо это тождество, в результате чего получаются следующие равенства (15—16).
И действительно это значение близко к самому ингенциальному значению, таким образом это выражение может считаться вторым видом записи ингенциальной единицы. Теперь же, можно переходить и к решению уравнения Эйлера для общего вида ингенциальных чисел, проведя в начале первую подстановку и обычные операции замены на этапе (17) и (18).
Когда же нужные преобразования подходят к концу, а иные действия уже не имеют места, то достаточно также продифференцировать обе части равенства как действительное тождество (19).
Дифференцируя первую часть равенства, можно прийти к результату в (20), а для второй части, вычисления продолжатся на протяжении всего (21).
Затем же применив (22—25) можно прийти к виду (26).
В результате достаточно прировнять оба результата в (20) и (26), поскольку это две части тождества, после чего получить (27) с необходимым упрощением, а уже в (28) с дополнительным упрощением и дифференцированием как тождество.
При этом дифференцирование первой части равенства очевидно в (29), как и второй в (30), после чего в уже (31) можно внести равенство и результирующие преобразования.
По итогу образуются равенства, которые необходимо дважды проинтегрировать, ибо ранее брались их производные, получая (32).
Интегрируя первую часть, в (33) получается отдельный результат и интегрируя уже вторую часть в (34).
Таким образом, можно прийти к равенству (35), откуда можно прийти к иному равенству в этом же уравнении.
Результат действительно довольно удивителен, но это равенство (35), вышедшее после подстановки в формулу Эйлера общий вид ингенциального числа и решением для этого случая является ингенциальное число (36). Таким образом это первое полноценное уравнение, решением которого стало ингенциальное число.
Хотя сами комплексные числа расположены на оси чисел, то этот промежуток можно выразить и на ингенциальной плоскости. У этой системы координат в качестве ординаты находится ось, начинаемая от бесконечности, а у абсциссы – все действительные числа. Таким образом все ингенциальные числа можно представить на такой прямоугольной системе координат, в случае добавления комплексных чисел – уже в пространстве.
Использованная литература
1. И. В. Баргатин, Б. а. Гришанин, В. Н. Задков. Запутанные квантовые состояния атомных систем. Редакция им. Ломоносова. 2001.
2. Г. Кейн. Современная физика элементарных частиц. Изд-во Мир. 1990.
3. С. Хокинг. Теория всего. От сингулярности до бесконечности: происхождение и судьба вселенной. Изд-во АСТ. 2006
4. С. Хокинг, Л. Млодинов. Высший замысел. Взгляд физика на сотворение мира. Изд-во АСТ. 2010.
5. Т. Дамур. Мир по Эйнштейну. От теории относительности до теории струн. Изд-во Москва. 2016.
6. С. Хокинг, Л. Млодинов. Кратчайшая история времени. Изд-во Амфора. 2011.
ОБ ИССЛЕДОВАНИЯХ ОТНОСИТЕЛЬНО ГИПОТЕЗЫ КОЛЛАТЦА В ЛИЦЕ МАТЕМАТИЧЕСКОГО ФЕНОМЕНА
Алиев Ибратжон Хатамович
Студент 2 курса факультета математики-информатики Ферганского государственного университета
Ферганский государственный университет, Фергана, Узбекистан
Аннотация. Когда об этой задаче рассказывают молодым математикам – их сразу предупреждают, что не стоит браться за её решение, ибо это кажется невозможным. Простую на вид гипотезу не смогли доказать лучшие умы человечества. Для сравнения, знаменитый математик Пол Эрдеш сказал: «Математика ещё не созрела для таких вопросов». Однако, стоит подробнее изучить данную гипотезу, что и исследуется в настоящей работе.
Ключевые слова: гипотеза Коллатца, числа-градины, ряды, алгоритм, последовательности, доказательства.
Annotation. When young mathematicians are told about this problem, they are immediately warned that it is not worth taking up its solution, because it seems impossible. A simple-looking hypothesis could not be proved by the best minds of mankind. For comparison, the famous mathematician Paul Erdos said: «Mathematics is not yet ripe for such questions.» However, it is worth studying this hypothesis in more detail, which is investigated in this paper.
Keywords: Collatz hypothesis, hailstone numbers, series, algorithm, sequences, proofs.
Вкратце её суть состоит в следующем. Выбирается некоторое число и если оно не чётное умножается на 3 и прибавляется 1, если оно чётное, то делиться на 2.
Можно привести алгоритм данного ряда для числа 7:
7 – 22 – 11 – 34 – 17 – 52 – 26 – 13 – 40 – 20 – 10 – 5 – 16 – 8 – 4 – 2 – 1
Далее получается цикл:
1 – 4 – 2 – 1 и т. д.
Из этого вытекает гипотеза о том, что если взять любое положительное целое число, если следовать алгоритму обязательно попадает в цикл 4, 2, 1. Гипотеза называется именем Лотара Коллатца, который как считается пришёл к этой гипотезе в 30 годах прошлого века, но у этой задачи много имён, она также известна как гипотеза Улама, теорема Какутани, гипотеза Тойца, алгоритм Хасса, Сиказузская последовательность или просто как «3n+1».
Как эта гипотеза обрела такую славу? Стоит отметить, что в профессиональной среде слава такой гипотезы весьма дурная, поэтому сам факт того, что кто-либо работает над этой гипотезой, может привести к тому, что этот исследователь будет наречён сумасшедшим или незнающим.
Сами числа, которые получаются, при этом преобразовании называются числами градинами, поскольку, подобно граду в облаках числа то опускаются, то поднимаются, но рано или поздно, все падают до единицы, по крайней мере так считается. Для удобства, можно сделать аналогию, что значения, вводимые в этот алгоритм, являются высотой над уровнем моря. Так, если взять число 26, то оно сначала резко уменьшиться, потом поднимается до 40, после чего за 10 шагов понижается до 1. Тут можно привести ряд для 26:
26 – 13 – 40 – 20 – 10 – 5 – 16 – 8 – 4 – 2 – 1
Однако, если взять соседнее число 27, оно будет скакать по самым разным высотам, добравшись до отметки в 9 232, что, продолжая аналогию, выше горы Эверест, но даже этому числу суждено рухнуть на Землю, правда ему потребуется уже 111 шагов, чтобы дойти до 1 и застрять в этой же петле. Таким же интересными числами могут быть числа 31, 41, 47, 54, 55, 62, 63, 71, 73, 82 и др. Можно для сравнения проанализировать таблицу (Табл. 1) и график (Рис. 1) для этих интересных чисел.
Табл. 1. Ряд длинных чисел для интересных значений чисел-гранул (первая строка – исходное значение)
Табл. 1. Ряд длинных чисел для интересных значений чисел-гранул (первая строка – исходное значение)
Табл. 1. Ряд длинных чисел для интересных значений чисел-гранул (первая строка – исходное значение)
Табл. 1. Ряд длинных чисел для интересных значений чисел-гранул (первая строка – исходное значение)
Табл. 1. Ряд длинных чисел для интересных значений чисел-гранул (первая строка – исходное значение)
Табл. 1. Ряд длинных чисел для интересных значений чисел-гранул (первая строка – исходное значение)
Табл. 1. Ряд длинных чисел для интересных значений чисел-гранул (первая строка – исходное значение)
Табл. 1. Ряд длинных чисел для интересных значений чисел-гранул (первая строка – исходное значение)
Табл. 1. Ряд длинных чисел для интересных значений чисел-гранул (первая строка – исходное значение)
Табл. 1. Ряд длинных чисел для интересных значений чисел-гранул (первая строка – исходное значение)
Табл. 1. Ряд длинных чисел для интересных значений чисел-гранул (первая строка – исходное значение)
Табл. 1. Ряд длинных чисел для интересных значений чисел-гранул (первая строка – исходное значение)
Табл. 1. Ряд длинных чисел для интересных значений чисел-гранул (первая строка – исходное значение)
Рис. 1. График значений для интересных чисел-гранул алгоритма