Книга Параллельные миры: Об устройстве мироздания, высших измерениях и будущем космоса - читать онлайн бесплатно, автор Митио Каку. Cтраница 3
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
Параллельные миры: Об устройстве мироздания, высших измерениях и будущем космоса
Параллельные миры: Об устройстве мироздания, высших измерениях и будущем космоса
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

Параллельные миры: Об устройстве мироздания, высших измерениях и будущем космоса

Пораженный значительностью этого монументального прорыва, Галлей предложил щедро финансировать публикацию новой теории. В 1687 году с помощью Галлея и при его финансовой поддержке Ньютон опубликовал свою грандиозную работу «Математические начала натуральной философии» (Philosophiae Naturalis Principia Mathematical). Эта работа была провозглашена тогда (и признается сейчас) одной из самых важных из когда-либо опубликованных в мире. Разом все ученые, не имеющие понятия о других законах Солнечной системы, оказались в состоянии самостоятельно предсказывать с величайшей точностью траекторию движения небесных тел.

«Начала» стали настолько популярны в салонах и при королевских дворах Европы, что поэт Александр Поуп писал:

Был этот мир глубокой тьмой окутан.Да будет свет! И вот явился Ньютон[11].

(Галлей понял, что поскольку орбита кометы представляет собой эллипс, то можно вычислить, когда она снова появится над Лондоном. Просмотрев старые записи, он обнаружил, что кометы 1531, 1607 и 1682 годов были на самом деле одной и той же кометой. Комету, оказавшую столь сильное влияние на становление современной Англии в 1066 году, на протяжении всей истории видели многие люди, в том числе Юлий Цезарь. Галлей предсказал, что комета вновь вернется в 1758 году. Когда же комета уже через годы после кончины Галлея и Ньютона действительно вернулась в предсказанный год на Рождество, ее назвали кометой Галлея.)

Ньютон открыл закон всемирного тяготения тогда, когда в связи с эпидемией чумы закрылся Кембриджский университет и ученый был вынужден уехать в свое поместье в Вульсторп. Ньютон с нежностью вспоминал прогулку в тамошнем парке, когда увидел, как упало яблоко. Тут он задал себе вопрос, которому в конечном счете суждено было изменить ход человеческой истории: если падает яблоко, падает ли также и Луна? В момент гениального озарения Ньютон понял, что яблоки, Луна, вообще все планеты подчиняются одному и тому же закону всемирного тяготения, что их падение (точнее, их движение) связано с законом обратных квадратов. Когда Ньютон обнаружил, что математика XVII века слишком примитивна, чтобы описать этот закон, он изобрел новое направление в математике – вычислительную математику, чтобы определить скорость падения яблок и лун.

В «Началах» Ньютон изложил также законы механики, которые определяют траектории всех земных и небесных тел. Эти «Начала» легли в основу теории конструирования машин, использования энергии пара, а также создания локомотивов, которые, в свою очередь, способствовали промышленной революции и развитию современной цивилизации. В наши дни все небоскребы, мосты и ракеты строятся с учетом ньютоновских законов механики.

Ньютон не только дал нам вечные законы механики; он также перевернул наше видение мира, представил совершенно новую картину Вселенной, где таинственные законы, управляющие движением небесных тел, были идентичны законам, действующим на Земле. Сцена жизни отныне уже не была окружена наводящими ужас небесными знамениями; актеры подчинялись тем же законам, что и декорации.

Парадокс Бентли

Поскольку «Начала» были работой революционной, они вызвали к жизни первые парадоксы в теориях о строении Вселенной. Если весь мир – сцена, то насколько она велика? Конечен мир или бесконечен? Это извечный вопрос, которым задавался еще римский философ Лукреций Кар. «Вселенная не ограничена ни в одном направлении, – говорил он. – Ведь совершенно ясно, что вещь может иметь предел лишь в том случае, если вне ее существует что-либо. Поэтому во всех измерениях, будь то вперед или назад, вверх или вниз, Вселенной нет конца»{14}.

Но теория Ньютона раскрыла и парадоксы, присущие любой теории конечной или бесконечной Вселенной. Простейшие вопросы ведут к целой бездне противоречий. Еще греясь в лучах славы, которую принесла ему публикация «Начал», Ньютон обнаружил, что его теория гравитации изобилует парадоксами. В 1692 году священник, преподобный отец Ричард Бентли, написал обезоруживающе простое, но огорчительное для Ньютона письмо. Тот факт, что гравитация всегда притягивала и никогда не отталкивала, написал Бентли, означает, что звезды, входящие в какое-либо скопление, естественным образом столкнутся друг с другом. Если Вселенная конечна, то ночное небо вместо того, чтобы быть неизменным и статичным, должно было бы представлять собой сцену невероятного побоища, поскольку звезды при столкновении друг с другом сливались бы в огненные суперзвезды. Но Бентли также обратил внимание на то, что если бы Вселенная была бесконечна, то сила, действующая на любой предмет, также была бы бесконечной и тянула бы и вправо, и влево, что стало бы причиной того, что звезды разорвало бы в клочья в результате огненных катаклизмов.

Поначалу казалось, что Бентли разгромил теорию Ньютона в пух и прах. Либо Вселенная конечна (и слилась в огненный шар), либо она бесконечна (в таком случае все звезды должны разлететься в стороны). Оба варианта разрушали новую теорию Ньютона. Эта проблема впервые в истории обнаружила едва различимые внутренние парадоксы, свойственные любой теории гравитации при применении ее ко всей Вселенной.

Поразмыслив, Ньютон написал Бентли, что обнаружил слабое место в его аргументации. Ученый писал, что считает Вселенную бесконечной, но совершенно однородной. Таким образом, если звезду тянет в какую-то сторону бесконечное количество звезд, то эту силу уравновешивает тяготение в противоположном направлении другого бесконечного количества звезд. Все силы во всех направлениях сбалансированы, и это создает статичную Вселенную. Таким образом, если сила гравитации всегда только притягивает, то единственным решением парадокса Бентли будет существование однородной бесконечной Вселенной.

Ньютон действительно нашел слабое место в аргументации Бентли. Однако он был достаточно умен, чтобы сознавать неубедительность своего ответа. Он признал в письме, что предлагаемое им решение, несмотря на техническую правильность, было нестабильным внутренне. Однородная, но бесконечная Вселенная Ньютона была похожа на карточный домик: на вид устойчивая, она могла рассыпаться, стоило ее чуть потревожить. Можно рассчитать, что, даже если одна-единственная звезда чуть-чуть качнется, это станет началом цепной реакции и скопления звезд начнут разрушаться. Своим ответом Ньютон отсылал к «божественной силе», которая якобы не дает развалиться его карточному домику. «Необходимо воздействие непрерывного чуда, чтобы Солнце и звезды, находящиеся в покое, не устремились друг к другу под действием силы тяготения»{15}, – писал он.

Ньютон рассматривал Вселенную как гигантские часы, запущенные Господом в начале времен и идущие с тех пор, повинуясь трем законам механики и не требуя божественного вмешательства. Но временами Господу все же приходилось вмешиваться и слегка настраивать механизм Вселенной, чтобы она не разрушилась. (Иными словами, иногда Господу приходилось вмешиваться, чтобы декорации на сцене творения не развалились и не рухнули на головы актеров.)

Парадокс Ольберса

Кроме парадокса Бентли существовал еще более интересный парадокс, который не могла обойти ни одна теория бесконечной Вселенной. Ольберс задался вопросом: почему ночное небо черное? Еще во времена Иоганна Кеплера астрономы знали, что если бы Вселенная была однородной и бесконечной, то, куда бы мы ни бросили взгляд, мы видели бы небо, освещенное бесконечным количеством звезд. В какую бы точку ночного неба ни был устремлен наш взгляд, он в конце концов натыкался бы на несметное количество звезд, и мы видели бы небо, залитое бесконечным количеством звездного света. Тот факт, что ночное небо – черное, а не яркое, веками считался глубоким космическим парадоксом.

Парадокс Ольберса, подобно парадоксу Бентли, обманчиво прост, но он терзал душу многим поколениям философов и астрономов. Оба парадокса опираются на наблюдения, что в бесконечной Вселенной гравитационные силы и световое излучение могут слагаться, что ведет к бесконечным значениям и того и другого. За сотни лет было предложено множество неверных объяснений. Кеплер был настолько обеспокоен этим парадоксом, что просто постулировал: Вселенная конечна, находится в оболочке, а потому лишь ограниченное количество звездного света достигает наших глаз.

Замешательство, вызванное этим парадоксом, было столь массовым (если массой считать ученое сообщество), что, согласно результатам исследования, проведенного в 1987 году, 70 % учебников по астрономии давали неверный ответ на этот вопрос.

Можно было попытаться решить парадокс Ольберса, предположив, что звездный свет поглощается пылевыми облаками. Именно такой ответ в 1823 году дал сам Генрих Вильгельм Ольберс, когда впервые точно сформулировал парадокс. Ольберс написал: «Очень удачно, что Земля не получает свет из каждой точки небесного свода! Однако при такой невообразимой яркости и температуре, которые в 90 000 раз выше тех, каким мы подвергаемся сейчас, Всевышний легко мог создать организмы, способные адаптироваться и к таким экстремальным условиям»{16}. В объяснение того факта, что Землю не заливает «свет столь же яркий, как и солнечный диск», Ольберс предположил, что, должно быть, пылевые облака поглощают сильный жар, делая жизнь на Земле возможной. Например, огненный центр нашей галактики Млечный Путь, который по справедливости должен «сжигать» все небо, в действительности скрыт пылевыми облаками. Если мы посмотрим в направлении созвездия Стрельца, где находится центр Млечного Пути, вместо ослепительного огненного шара нашим глазам предстанет лишь темное пятно.

Но и пылевые облака не могут служить убедительным объяснением парадокса Ольберса. За достаточно длительное (чтобы не сказать – бесконечное) время пылевые облака поглотят свет бесконечного количества звезд и в конце концов засверкают сами подобно звездной поверхности. Таким образом, даже пылевые облака должны бы сиять в ночном небе.

По этой логике можно предположить, что чем дальше находится звезда, тем слабее ее свет. Факт по сути своей верен, но он не может служить ответом. Если мы взглянем на участок ночного неба, то увидим, что самые далекие звезды действительно тусклые, но чем дальше мы устремляем взгляд, тем больше звезд видим. Такого в однородной Вселенной не должно было бы быть – там небо казалось бы белым. (Это объясняется тем, что интенсивность звездного света, обратно пропорциональная квадрату расстояния до звезды, компенсировалась бы количеством звезд, прямо пропорциональным квадрату расстояния.)

Как ни странно, первым в истории человеком, решившим парадокс Ольберса, стал американский автор детективов Эдгар Аллан По, который увлекался астрономией. Перед самой смертью он опубликовал многие из своих наблюдений в неоднозначной философской поэме под названием «Эврика: Прозаическая поэма». Вот замечательный отрывок:

Если бы непрерывность звезд была бесконечна, тогда бы заднее поле неба являло нам единообразную светящесть, подобную исходящей от Млечного Пути, ибо безусловно не было бы точки на всем этом заднем поле, где не существовало бы звезды. Единственный способ поэтому, при таком положении вещей, понять пустоты, что открывают наши телескопы в бесчисленных направлениях, – предположить, что рассеяние от незримого заднего поля так несметно, что ни один его луч доселе совершенно не мог нас достигнуть{17}.

В заключение По писал о том, что эта мысль «слишком прекрасна, чтобы не содержать в себе Истину как неотъемлемую свою составляющую».

Это и есть ключ к верному ответу. Возраст Вселенной не бесконечен. Рождение мира было. Нашему взгляду доступна лишь некая часть звездного света. Свету наиболее отдаленных от нас звезд не хватило времени, чтобы достичь наших взоров. Космолог Эдвард Харрисон, впервые обнаруживший, что По разрешил парадокс Ольберса, написал: «Когда я впервые прочел слова По, я был поражен: как мог поэт, в лучшем случае ученый-любитель, 140 лет назад уловить верное объяснение, в то время как в наших колледжах до сих пор преподают объяснение неправильное?»{18}

В 1901 году шотландский физик лорд Кельвин также нашел верное решение. Он осознал, что, глядя на ночное небо, мы видим его в прошлом, а не таким, каково оно сейчас, поскольку скорость света, хоть и гигантская по земным меркам (299 792 458 м/с), все же конечна, и свету отдаленных звезд необходимо время, чтобы достичь Земли. По подсчетам Кельвина, для того чтобы ночное небо было белым, Вселенная должна бы растянуться на сотни триллионов световых лет. Но поскольку Вселенной не триллионы лет, небо будет только черным. (Существует также второй фактор, который способствует решению вопроса, почему ночное небо черное; и этот фактор – конечный жизненный цикл звезд, измеряющийся миллиардами лет.)

Недавно появилась возможность экспериментально проверить правильность решения По при помощи таких спутников, как космический телескоп «Хаббл». Столь мощные телескопы, в свою очередь, позволяют нам ответить на вопрос, который задают даже дети: «Как далеко от нас самая далекая звезда? И что лежит за самой далекой звездой?» Чтобы ответить на эти вопросы, астрономы запрограммировали космический телескоп «Хаббл» для решения исторической задачи – заснять самую отдаленную точку Вселенной. Для того чтобы уловить чрезвычайно слабые сигналы из отдаленнейших уголков космоса, телескопу предстояло выполнить беспрецедентную работу: быть направленным в одну и ту же точку в небе рядом с созвездием Ориона на протяжении нескольких сотен часов, что требовало точнейшей настройки телескопа на протяжении четырех сотен оборотов Земли. Проект был столь сложен, что его выполнение растянулось более чем на четыре месяца.

В 2004 году на первых полосах газет всего мира была опубликована ошеломляющая фотография. На ней – скопление десяти тысяч ранних галактик, возникших из хаоса Большого взрыва. «Возможно, нам довелось увидеть конец начала»{19}, – заявил Антон Кикемир из Института исследований космоса с помощью космического телескопа. На фотографии изображено беспорядочное скопление рождающихся галактик на расстоянии более 13 млрд световых лет от Земли, то есть понадобилось более 13 млрд лет для того, чтобы их свет достиг Земли. Поскольку самой Вселенной лишь 13,7 млрд лет, это означает, что галактики сформировались примерно через полмиллиарда лет после возникновения Вселенной, когда первые звезды и галактики рождались из «кипящего бульона» газов, оставшихся после Большого взрыва. «"Хаббл" переносит нас на расстояние, откуда камнем докинуть до Большого взрыва»{20}, – заявил астроном Массимо Стивавелли из того же института.

Но тут возникает вопрос: что лежит за пределами самой далекой галактики? При внимательном рассмотрении этой замечательной фотографии становится понятно, что между галактиками – лишь тьма. Именно эта тьма является причиной того, что ночное небо – черное. Это последняя граница, за которой мы не видим света дальних звезд. Однако эта тьма и сама является микроволновым реликтовым излучением. Таким образом, окончательный ответ на вопрос, почему ночное небо черное, таков: на самом деле ночное небо совсем не черное. (Если бы наши глаза каким-то образом могли воспринимать микроволновое излучение, а не только видимый спектр, мы бы увидели излучение, порожденное Большим взрывом и наполняющее ночное небо. В каком-то смысле излучение Большого взрыва появляется каждую ночь. Если бы наши глаза могли улавливать микроволны, мы бы увидели, что за самой далекой звездой обретается само творение.)

Эйнштейн-мятежник

Законы, открытые Ньютоном, так хорошо объясняли мир, что науке понадобилось более 200 лет, чтобы сделать очередной серьезный шаг. Этот шаг был связан с работой Альберта Эйнштейна. Начало его карьеры никак не предвещало такой революции в науке. Получив степень бакалавра в Политехническом институте в Цюрихе (Швейцария) в 1900 году, Эйнштейн обнаружил, что получить работу нет никакой надежды. Его карьеру разрушили его же преподаватели, не любившие самонадеянного дерзкого студента, который часто срывал занятия. Тоскливые безысходные письма свидетельствуют о тяжелой депрессии. Альберт считал себя неудачником и тяжелой обузой для родителей. В одном письме он признавался, что даже собирался свести счеты с жизнью. «Несчастье моих бедных родителей, у которых за столько лет не было ни единой минуты счастья, тяжелее всего давит на мои плечи… Я лишь обуза для родственников… Наверняка было бы лучше, если бы я вообще не жил»{21}, – с горечью писал он.

В отчаянии Альберт подумывает о том, чтобы бросить науку и пойти работать в страховую компанию. Он даже взялся за частные уроки, но поспорил с работодателем и его уволили. Когда подруга Эйнштейна Милева Марич неожиданно забеременела, он сознавал, что ребенок останется незаконнорожденным, потому что на женитьбу у него нет средств. (Никто не знает, что в конце концов стало с его незаконнорожденной дочерью Лизерль.) Глубокое потрясение, которое испытал Эйнштейн, когда внезапно умер его отец, оставило в душе незаживающую рану, от которой он так никогда и не излечился. Ученый всегда помнил, что отец умер, считая сына неудачником.

Хотя 1901–1902 годы были самым трудным периодом в жизни Эйнштейна, от забвения его спасла рекомендация сокурсника Марселя Гроссмана, который, потянув «за кое-какие ниточки», обеспечил Эйнштейну работу скромного клерка в Швейцарском патентном бюро в Берне.

Парадоксы относительности

На первый взгляд, патентное бюро было не самым перспективным местом, где могла начаться величайшая со времен Ньютона революция в физике. Но были у этой службы и свои преимущества. Быстро разделавшись с заявками на патенты, загромождавшими его стол, Эйнштейн откидывался на стуле и погружался в детские воспоминания. В молодости он прочел «Естественнонаучные книги для народа» Аарона Бернштейна – «работу, которую я прочел, затаив дыхание», вспоминал Альберт. Бернштейн предлагал читателю представить, что он движется параллельно с электрическим током, когда тот передается по проводам. В 16 лет Эйнштейн задал себе вопрос: на что был бы похож луч света, если бы его можно было догнать? Он вспоминал: «Такой принцип родился из парадокса, на который я натолкнулся в 16 лет: если я гонюсь за лучом света со скоростью с (скорость света в вакууме), я должен наблюдать такой луч света как пространственно колеблющееся электромагнитное поле в состоянии покоя. Однако, кажется, такой вещи не может существовать – так говорит опыт и так говорят уравнения Максвелла»{22}. В детстве Эйнштейн считал, что если двигаться параллельно лучу света со скоростью света, то свет будет казаться замерзшим, подобно застывшей волне. Однако никто не видел замерзшего света, так что тут явно что-то было не так.

В начале века существовали в физике два столпа, на которых покоилось все: ньютоновская теория механики и гравитации и теория света Максвелла. В 1860-е годы шотландский физик Джеймс Кларк Максвелл доказал, что свет состоит из пульсирующих электрических и магнитных полей, постоянно переходящих друг в друга. Эйнштейну же предстояло открыть, к его великому потрясению, что эти два столпа противоречат друг другу, и одному из них предстояло рухнуть.

В уравнениях Максвелла он обнаружил решение загадки, которая не давала ему покоя его на протяжении 10 лет. Эйнштейн нашел в них то, что упустил сам Максвелл: уравнения доказывали, что свет перемещается с постоянной скоростью, при этом было совершенно неважно, с какой скоростью вы пытались догнать его. Скорость света с была одинаковой во всех инерциальных системах отсчета (то есть системах отсчета, двигающихся с постоянной скоростью). Стояли ли вы на месте, ехали на поезде или примостились на мчащейся комете, вы бы обязательно увидели луч света, несущийся впереди вас с постоянной скоростью. Неважно, насколько быстро вы двигались бы сами, – обогнать свет вам не под силу.

Такое положение дел быстро привело к появлению множества парадоксов. Представьте на миг астронавта, пытающегося догнать луч света. Астронавт стартует на космическом корабле, и вот он несется голова в голову с лучом света. Наблюдатель на Земле, ставший свидетелем этой гипотетической погони, заявил бы, что астронавт и луч света двигаются бок о бок. Однако астронавт сказал бы нечто иное, а именно: луч света уносился вперед, как если бы космический корабль находился в состоянии покоя.

Вопрос, вставший перед Эйнштейном, заключался в следующем: как могут два человека настолько по-разному интерпретировать одно и то же событие? По теории Ньютона, луч света всегда можно догнать; в мире Максвелла это было невозможно. Эйнштейна внезапно озарило, что уже в фундаментальных основах физики таился фундаментальный же изъян. Эйнштейн вспоминал, что весной 1905 года «в моей голове разразился шторм». Он наконец нашел решение: время движется с различной скоростью в зависимости от скорости движения. По сути, чем быстрее двигаться, тем медленнее движется время. Время не абсолютно, как когда-то считал Ньютон. По Ньютону, время однородно во всей Вселенной и длительность одной секунды на Земле будет идентична одной секунде на Юпитере или Марсе. Часы абсолютно синхронизированы со всей Вселенной. Однако, по Эйнштейну, различные часы во Вселенной идут с разными скоростями.

Эйнштейн понял, что если бы время могло меняться в зависимости от скорости{23}, то другие величины, такие как длина, масса и энергия, также должны меняться. Он обнаружил, что чем быстрее тело двигается, тем сильнее оно сокращается в направлении движения (что иногда называют «сокращением Лоренца – Фицджеральда»). Подобным образом, чем быстрее вы двигаетесь, тем тяжелее вы становитесь. (По сути, когда вы приблизитесь к скорости света, время замедлится до полной остановки, ваши размеры сократятся до полного нуля, а ваша масса возрастет до бесконечности. Полный абсурд. Это причина того, что нельзя превысить световой барьер, который является скоростным пределом во Вселенной.)

Это странное искажение пространства-времени склонило некоего поэта написать следующее:

Жил-был парень по имени Фиск,Фехтуя, он был крайне быстр,И так был он быстр во владении,Что Фицджеральдово сокращениеПревратило рапиру в диск.

Подобно тому как прорыв Ньютона объединил земную и небесную физику, Эйнштейн объединил время и пространство. Но он также показал, что материя и энергия взаимосвязаны и потому могут переходить друг в друга. Если объект становится тем тяжелее, чем быстрее он движется, это означает, что энергия движения трансформируется в материю. Обратное также справедливо – материя может быть преобразована в энергию. Эйнштейн подсчитал, сколько энергии будет преобразовано в материю, и вывел формулу Е = ², то есть даже крошечное количество материи m умножается на огромное число (квадрат скорости света) при превращении в энергию Е. Таким образом, был обнаружен таинственный источник энергии звезд – им оказалось преобразование материи в энергию согласно уравнению, которое справедливо для всей Вселенной. Тайну звезд оказалось возможно раскрыть благодаря простому утверждению, что скорость света одинакова во всех инерциальных системах отсчета.

Так, как когда-то Ньютон, Эйнштейн изменил наш взгляд на подмостки жизни. В мире Ньютона все актеры точно знали, который час и как измеряется расстояние. Ход времени и размеры сцены никогда не менялись. Но относительность принесла нам причудливое понимание пространства и времени. Во Вселенной Эйнштейна наручные часы каждого актера показывают свое время. Это означает, что сверить все часы, тикающие на сцене, невозможно. На репетицию, назначенную в полдень, разные актеры явятся в разное время. И вообще, когда актеры бегают по сцене, происходят вещи необыкновенные. Чем быстрее они двигаются, тем медленнее тикают их часы и тем более тяжелыми и плоскими становятся их тела.

Потребовались годы, чтобы широкое научное сообщество приняло взгляды Эйнштейна. Но сам Эйнштейн не стоял на месте; он хотел применить свою новую теорию относительности к самой гравитации. Он осознавал всю сложность своего предприятия – в одиночку заниматься самой прогрессивной и «тяжеленной» теорией своего времени, точнее, опережающей свое время. Макс Планк, создатель квантовой теории, предостерегал Эйнштейна: «Как старший друг я должен предупредить тебя, чтобы ты не делал этого, ибо, во-первых, ты не добьешься успеха, а даже если и добьешься, никто тебе не поверит»{24}.

Эйнштейн понимал, что его новая теория относительности разрушала теорию гравитации Ньютона. По Ньютону, гравитация распространялась во Вселенной мгновенно. Но тут возникает вопрос, который иногда задают даже дети: «Что будет, если Солнце исчезнет?» По Ньютону, вся Вселенная тут же станет свидетельницей исчезновения Солнца. Но по теории относительности это невозможно, поскольку информация об исчезновении звезды ограничена скоростью света. Согласно теории относительности, внезапное исчезновение Солнца вызвало бы сферическую ударную гравитационную волну, распространяющуюся во все стороны со скоростью света. Наблюдатели, находящиеся с внешней стороны ударной взрывной волны, сказали бы, что Солнце продолжает светить, поскольку гравитация еще не успела достичь их. Но наблюдатель внутри волны сказал бы, что Солнце исчезло. Для разрешения этой проблемы Эйнштейн ввел совершенно новые понятия пространства и времени.