Книга Вселенная с нуля. От Большого взрыва до абсолютной пустоты - читать онлайн бесплатно, автор Жан-Люк Робер-Эсиль
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
Вселенная с нуля. От Большого взрыва до абсолютной пустоты
Вселенная с нуля. От Большого взрыва до абсолютной пустоты
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

Вселенная с нуля. От Большого взрыва до абсолютной пустоты

Жак Поль, Жан-Люк Робер-Эсиль

Вселенная с нуля: от Большого взрыва до абсолютной пустоты

Jacques Paul

Jean-Luc Robert-Esil


La fabuleuse histoire

DE L’UNIVERS

DU BIG BANG AU BIG FREEZE


Originally published in France as: La fabuleuse histoire de l’Univers. Du Big Bang au Big Freeze By Jacques PAUL & Jean-Luc ROBERT-ESIL © Dunod, 2019, Malakoff


Во внутреннем оформлении использованы фотографии и иллюстрации:


© Frederic CASTEL/Gamma-Rapho / GettyImages.ru;

© Sebastian Kaulitzki, Science History Images, Universal Images Group North America LLC, American Photo Archive / Alamy / Legion-Media;

© UIG Education / Encyclopaedia Britannica / DIOMEDIA



© Соколова М.С., перевод на русский, 2023

© Оформление. ООО «Издательство «Эксмо», 2023

Предисловие

Мы, человеческие существа, похожи на младенца, потерявшегося в колыбели огромного размера и заснувшего, свернувшись калачиком в уголке кроватки, устав от попыток нащупать границы своего крошечного мира. В точности как этот малыш, мы постоянно пытаемся найти пределы нашей Вселенной! Именно поэтому астрономия не просто одна из наук: она воплощает нашу генетическую связь со Вселенной, с этой сущностью, откуда возникло все, что нас окружает, да и мы сами тоже. И однажды мы должны будем вернуться к собственным истокам, когда жгучее Солнце сделает необитаемой нашу крошечную планету.

С тех самых пор, как мы начали осознавать самих себя и наш мир, наши взгляды обращены в небо. Уже шесть десятков лет прошло с того момента, когда юный советский военный летчик воплотил в жизнь древний миф об Икаре и проник за границы земной атмосферы на допотопном космическом корабле. И все же пока только астрономия позволяет во всех подробностях исследовать небесные тела. Чувствительные электронные глаза астрономических приборов тщательно сканируют небо. Благодаря астрономии Вселенная стала, как выразился французский писатель и ученый Бернар Ле Бовье де Фонтенель, «великим спектаклем, сравнимым только с оперой».

Именно радость от возможности поделиться несравненным научным наследием с читателями побудила нас написать «Волшебную историю Вселенной». Мы также должны воздать должное всем тем женщинам и мужчинам, которые разделяли эту страсть и были так же околдованы небом. Только благодаря всем этим мечтателям мы можем наконец увидеть того «Бога из машины», который управляет главным действием…

Описанные в книге явления были отобраны по признакам их универсального характера, например процессы, которые происходили на заре возникновения Вселенной, или те, что, вероятно, произойдут при ее конце. Другие описанные явления имеют значение для нашего существования в Солнечной системе или сыграли роль в образовании нашей звезды и определяют ее потенциальное будущее. И наконец, целый ряд упомянутых нами событий относится к историческим временам, то есть к периоду продолжительностью около четырех веков, в течение которого развитие науки двигалось все ускоряющимися темпами.

Только в конце XVII века европейское научное сообщество, обретя уверенность в себе и доминирующую роль в мире, смогло сформулировать (правда, с большим трудом) разницу между астрологией и астрономией и наконец осмелилось прийти к выводу, что Вселенная может на самом деле быть бесконечной, и даже населенной бесконечным количеством миров, похожих на наш. Еще труднее поверить сегодня, что в XIX веке большинство ученых считало Вселенную равной нашей галактике, Млечному Пути. Еще в 1990-х годах мы ничего не знали о расширении Вселенной и о темной энергии – предполагаемой причине этого расширения. Но сегодня все специалисты уверены, что эта энергия (ее природа до сих пор не ясна) составляет три четверти всего энергетического запаса Вселенной…

Еще следует пояснить, что легло в основу нашего исторического и научного выбора. В ряде случаев он отражает то, что принято называть «общепринятым консенсусом»; но для целой серии явлений мы были вынуждены приводить разные варианты интерпретаций и гипотез, которые порой весьма удачно дополняют и объясняют друг друга.

Благодарности

Мы хотели бы особо поблагодарить Анн Помпон за ее неутомимую поддержку и всегда ценные примечания. И огромное спасибо Саре Форвей за ее тщательную работу над корректурой рукописи.

Начало истории


Астрофизики изучают все те штуки, что мы видим в небе, как системы, подчиняющиеся законам физики, но, прежде всего, они исследуют саму Вселенную во всей ее огромности. В 20-х годах ХХ века, расставшись с идеей Вечной Вселенной, столь дорогой их предшественникам, философам-материалистам из века XIX, астрофизики отбросили космогонические мифы, созданные самыми разными древними культурами, и заинтересовались идеей образования Вселенной в результате некоего уникального события. Научное сообщество, опираясь на неоспоримые доказательства, согласилось с выводом, что Вселенная возникла в результате процесса, который начался тринадцать миллиарда восемьсот миллионов лет назад, и описывается Стандартной космологической моделью.

На этом этапе нам следует ввести понятие «наблюдаемая Вселенная», которым обозначается ее видимая часть. Это воображаемая сфера, в центре которой находится Земля, и граница которой – космологический горизонт – расположена там, откуда до нас не может дойти ни один сигнал. Стандартная космологическая модель сегодня относит космологический горизонт на расстояние 45 миллиарда световых лет, с учетом процесса расширения Вселенной.

Исследовать ненаблюдаемую часть Вселенной невозможно, но, согласно космологическому принципу, Вселенная, если рассматривать ее в очень большом масштабе, подобна самой себе по всем направлениям, поэтому те области Вселенной, что находятся за космологическим горизонтом, скорее всего, похожи на те, что мы наблюдаем в ее видимой части.

Эта модель соответствует идее образования Вселенной в измеримом прошлом и создает возможность дискуссий, способных смутить самый рациональный ум. Один из самых странных выводов, вытекающих из этой модели, предполагает, что физические константы были будто специально скорректированы так, чтобы возникла разумная жизнь.

События начала истории произошли очень давно и уложились в очень период (триста восемьдесят тысяч лет). Датировать их с помощью обычного календаря невозможно, поскольку при таком подходе они просто сливаются в одно. Поэтому в этой части книги мы использовали датировку с помощью отрезков времени, прошедшего с момента начала расширения Вселенной.

До Большого взрыва

Мультивселенная?

Мультивселенная – это гипотетический ансамбль всех возможных миров, каждый из которых существует по собственным законам. Наш мир развивался на основе фундаментальных физических констант, которые способствовали возникновению жизни.

В 1895 году американский философ Уильям Джеймс придумал термин «мультивселенная», правда, для совершенно другого контекста. Только в 1963 году под пером Майкла Муркока, знаменитого английского фантаста, термин получил свое нынешнее значение. В 2003 году шведско-американский космолог Макс Тегмарк предложил классификацию различных типов мультивселенной. Первый тип, основанный на общей теории относительности, предполагает, что размеры пространства, несомненно, значительно больше, чем размеры наблюдаемой Вселенной, то есть сферы радиусом примерно сорок пять миллиарда световых лет. Остальные многочисленные небесные тела расположены за космологическим горизонтом, и если считать пространство бесконечным, то вполне логично предположить существование бесконечного количества различных миров, которые отличаются от нашего распределением материи, но подчиняются тем же законам физики, на основе тех же фундаментальных констант.

Квантовая механика, другая не менее ортодоксальная физическая теория, тоже совместима с концепцией мультивселенных, по крайней мере в той ее интерпретации, которую разработал американский физик Хью Эверетт: он полагает, что результаты некоторых наблюдений нельзя предвидеть и что любое событие – результат веера возможностей, характеризующихся определенной степенью вероятности. По мнению Эверетта, каждой из этих возможностей соответствует своя вселенная.


Визуальная модель мультивселенной, по мнению некоторых физиков, должна быть похожа на нечто вроде пены, в которой каждый пузырь представляет собой образующуюся вселенную. Под воздействием энергетических флуктуаций пузырь может проходить фазу расширения, превращаясь в пространство, обладающее собственной физикой.


Таким образом, если считать, что бросок кости с шестью гранями соответствует некоему квантовому состоянию, шесть возможных позиций, в которых окажется кость после броска, соответствуют шести разным вселенным.

Теория хаотической инфляции предполагает, что пространство в целом расширяется. Это похоже на пузыри воздуха внутри поднимающегося теста. Пузыри образуются в пространстве и являются зародышами вселенных первого типа в классификации Эверетта. Некоторые из них в результате различных спонтанных нарушений симметрии обретают иные физические константы. Эта воображаемая конструкция не поддается проверке и таким образом оказывается вне области действия научных методов. Но она позволяет ответить на один из самых мучительных вопросов физики – почему фундаментальные константы будто специально скорректированы именно таким образом, чтобы эволюция нашего мира привела к разумной жизни? А в мире множественных вселенных образование обитаемого мира было бы банальным событием, и не было бы ничего удивительного в том, что одна из вселенных, та, в которой мы живем, обладала бы физическими константами, позволяющими зародиться разумной жизни.


☛ СМ. ТАКЖЕ

Инфляция (10–35 секунд после начала расширения)

Вселенная и ее постоянные (9,7 миллиарда лет назад)

Природный реактор (2 миллиарда лет назад)

Начало расширения

Большой взрыв

Общая теория относительности Эйнштейна позволила построить модель Вселенной, которая в самом начале своего развития была очень горячей и очень плотной. Большой взрыв у истоков Вселенной уже давно не вызывает споров в научном мире.

Для построения физической модели Вселенной астрофизики использовали общую теорию относительности, сформулированную в 1915 году Альбертом Эйнштейном. В 1922-м русский математик Александр Фридман, изучая теорию относительности, увидел вытекающую из нее возможность изучения структуры Вселенной в целом. В том же 1922 году, а потом и в 1924-м, он описал в своих работах такое развитие Вселенной во времени, которое предполагало изначальное состояние сингулярности. К тому же выводу в 1927 году пришел и бельгийский астроном и священник Жорж Леметр – он заявил в 1929-м, что разбегание спиральных туманностей, открытое американским астрономом Эдвином Хабблом, является результатом расширения Вселенной.

Любое расширение предполагает некое начало. Чтобы его описать, в 1930-х годах Леметр предположил, что материя, пространство и время возникли из единственного «первичного атома», и эта модель стала предшественницей теории, известной как «теория Большого взрыва». Авторство термина принадлежит британскому астроному Фреду Хойлу, который впервые произнес это название во время радиопередачи ВВС The Nature of Things (Природа вещей). Будучи сторонником стационарной и вечной Вселенной, он на самом деле попытался пошутить над конкурирующей теорией, но создал «звездное» слово для астрономического словаря. Термин прижился, хотя он и не точен: Большой взрыв, по сути, не был взрывом, разбросавшим материю во всех направлениях и заполнившим ею некую первичную пустоту. Это само пространство начало внезапно расширяться с течением времени, увеличивая расстояния между объектами и увлекая их за собой в процессе расширения.

Тем не менее это выражение теперь обозначает общепринятую теорию, объясняющую три объективно доказанных результата независимых наблюдений:

• чем дальше находятся далекие галактики от наблюдателя, тем быстрее они от него удаляются: в самом начале Вселенная была более плотной и более горячей, подобно газу, нагревшемуся при сжатии;

• пропорциональное содержание гелия (8 %, судя по имеющемуся количеству атомов этого элемента) одинаково во всей Вселенной; отсюда можно сделать вывод, что Вселенная пережила фазу, во время которой плотность и температура были достаточно высокими, чтобы способствовать синтезу этого элемента;

• фоновое излучение, обнаруженное на миллиметровых волнах, свидетельствует об эпохе огромной плотности и высоких температур в самом начале существования Вселенной.

Теория Большого взрыва базируется на этих трех столпах и еще двух важных гипотезах: универсальности физических законов; изотропности (у нее нет центра) и однородности (ее плотность примерно одинакова повсюду) Вселенной в очень больших масштабах.


☛ СМ. ТАКЖЕ

Образование гелия (3 минуты после начала расширения)

Вселенная становится прозрачной (380 тысяч лет после начала расширения)

Начало расширения

Почему наше небо ночью черное?

Парадокс Ольберса: «B бесконечной однородной в пространстве и времени Вселенной всякий луч зрения должен упираться в звезду – так почему же наше небо ночью черное?»

Астрономы Возрождения, опровергнув аристотелеву модель сферы, на которой «неподвижно закреплены» звезды, предположили, что светила находятся в гораздо более внушительном, практически бесконечном пространстве, и немедленно столкнулись с парадоксом, который преследовал их еще несколько веков. И в самом деле, если считать, что количество звезд бесконечно, то взгляд, куда ни посмотри, должен был бы упираться в светящуюся точку. И небесный свод должен был бы излучать ослепительный свет, такой же яркий, как звездная поверхность, как поверхность Солнца! А ночное небо практически черное…

Одним из первых этот парадокс сформулировал знаменитый астроном из Вюртемберга Иоганн Кеплер. И он воспользовался им как аргументом для опровержения идеи бесконечности Вселенной, которую незадолго до этого доказывал итальянский монах-доминиканец Джордано Бруно, утверждавший, что Вселенная не имеет ни центра, ни окружности. В XVIII веке, когда научный мир вовсю рассуждал о бесконечности, швейцарский математик Жан-Филипп Луи де Шезо провел первый серьезный анализ свойств Вселенной, в которой могло бы светиться бесконечное количество звезд. В 1826 году немецкий врач Генрих Ольберс вновь сформулировал эту проблему в более доступной форме, опираясь на понятие «луча зрения». Он пришел к тому же парадоксальному вопросу: почему ночью небо черное?


В бесконечном космосе, где звезды светят вечно, любой взгляд, материализованный на фото в виде лазерного луча, испускаемого из башни телескопа VLT в Чили, должен был бы непременно упереться в звезду


Два десятилетия спустя американский писатель и поэт Эдгар По, крупная фигура американского романтизма, написал «Эврику»[1], большую поэму в прозе, в которой он изложил основы космологических концепций. Именно в этом произведении, опубликованном в 1848 году, По дал первое правдоподобное решение парадокса Ольберса, предположив, что у Вселенной существует конечный возраст. Ведь свет распространяется с конечной скоростью – это было установлено еще в 1676 году. По также показал, что, если бы даже размеры Вселенной и были бесконечны, с Земли можно было бы наблюдать лишь конечное число звезд. И это количество наблюдаемых звезд столь невелико, что вероятность попадания случайного луча зрения с Земли на звезду довольно мала.

Теория Большого взрыва также предполагает, что Вселенная началась в определенный, конечный момент в прошлом, и таким образом дает аналогичное решение парадокса Ольберса. Более того, из нее можно сделать заключение о существовании когда-то довольно неожиданного феномена: поскольку Вселенная расширялась из очень горячего состояния, то упомянутое выше реликтовое излучение, которое в наше время скромно спряталось в миллиметровый диапазон длин волн, в эпоху рекомбинации, то есть тринадцать миллиарда восемьсот миллионов лет назад, было в тысячу миллиарда раз интенсивнее. Тогда все небо сияло как одно огромное Солнце.


☛ СМ. ТАКЖЕ

Большой взрыв (Начало расширения)

Начало расширения

Квантовая гравитация

Физические параметры первых мгновений существования Вселенной столь экстремальны, что для их описания нужно по идее объединить две доселе остающиеся несовместимыми теории – общую теорию относительности и квантовую механику.

Все события, происходящие во Вселенной, протекают посредством взаимодействий, относящихся к «фундаментальным», то есть таким, которые нельзя разложить на более базовые взаимодействия. И каждое проявляется в виде сил, тоже именуемых «фундаментальными». Перечисляя в алфавитном порядке, можно назвать следующие виды взаимодействий: гравитационное, сильное, слабое и электромагнитное. Если же попытаться ранжировать их по относительной интенсивности, то можно увидеть среди фундаментальных взаимодействий крайнее разнообразие: на шкале интенсивности, в которой гравитация равна 1, слабое взаимодействие будет иметь масштаб 1025 (число записывается в виде единицы с двадцатью пятью нулями), электромагнетизм – 1036, а сильное взаимодействие – и вовсе 1038!

Физики представляют фундаментальные взаимодействия в виде обмена частицами, играющими роли «посланников»; например, в электромагнитном взаимодействии такими посланниками служат фотоны. Хорошо нам знакомые гравитационное и электромагнитное взаимодействия работают на больших расстояниях. Посланниками для них служат частицы с нулевой массой и нулевым зарядом. Сильное и слабое взаимодействия работают на очень небольших расстояниях, ограниченных размерами атомных ядер. Их посланники обладают массой и даже зарядом. Гравитация – настолько слабое взаимодействие, что оно не действует на уровне частиц; для нее необходимы гораздо более внушительные массы.

Поэтому совершенно не удивительно, что теория гравитации, которой, по сути, является общая теория относительности, одна из самых успешных физических теорий, описывает мир огромных объектов – планет, звезд и галактик. И наоборот, когда речь идет о бесконечно малых масштабах, приходится использовать квантовую механику, которая описывает три фундаментальных взаимодействия атомного и субатомного уровня.

Физики из самых известных лабораторий нашей планеты сегодня чувствуют себя весьма неуютно, когда речь заходит о разработке теории, способной описать первые моменты существования Вселенной, когда объединились две бесконечности и четыре вида взаимодействий. Примирить двух враждующих сестер, общую теорию относительности и квантовую механику, чрезвычайно трудно. Попыток было немало, о чем свидетельствует пышный букет теорий, разработанных исследователями, пытавшимися провести «Великое объединение»: супергравитация, теория суперструн, петлевая квантовая гравитация…

Однако создание теории квантовой гравитации, которая позволила бы прийти к такому консенсус, натыкается на серьезное препятствие: ее масштабы энергий и расстояний все еще слабо доступны для технологических методов, которые есть в распоряжении у экспериментаторов. Подобную теорию пока невозможно проверить!


☛ СМ. ТАКЖЕ

Планковская эпоха (5 · 10–44 секунд после начала расширения)

5 · 10–44 секунд после начала расширения

Планковская эпоха

Плотность и температура в этой фазе существования Вселенной были столь высоки, что теория относительности просто не действовала – ее место занимала теория квантовой гравитации, которая до сих пор окончательно не сформулирована и продолжает изучаться.

В 1899 году немецкий физик-теоретик Макс Планк выступил в Академии наук Пруссии с докладом, в котором предложил собственную систему единиц измерения, созданную на основе одних только фундаментальных физических констант. Для построения этой системы «естественных» единиц Планк использовал гравитационную постоянную, скорость света в вакууме (которая позже сыграет ключевую роль в теории относительности Эйнштейна) и константу, которая впоследствии будет названа в его честь и станет одной из основ теории квантовой гравитации – постоянную Планка. Исходя из этих базовых постоянных, значение каждой из которых было принято равным единице, удалось, к примеру, получить значение единицы времени. Планковское время, обозначаемое tP, оказалось равным примерно 5 · 10–44 секунд. Это самая маленькая мера времени, обладающая физическим смыслом.

В честь великого немецкого физика космологи назвали сверх период, наступивший сразу после Большого взрыва, планковской эпохой – ее продолжительность имеет тот же порядок, что и планковское время. В отсутствие законченной теории квантовой гравитации описать физические законы, действовавшие в этот период невозможно, так же как и определить его точную продолжительность. Ясно только, что в этот период, который был не длиннее планковского времени, не существовало самих понятий времени и пространства. Пока ученые ограничиваются упоминанием «квантовой пены», первичного тумана, в котором четыре главных природных силы были объединены в некое фундаментальное взаимодействие.

Отсутствие физического языка для описания этого состояния материи создает барьер (планковскую стену), который не позволяет исследовать первые мгновения существования Вселенной. Тем не менее космологи, похоже, вот-вот получат в свое распоряжение вероятное свидетельство, которое сможет помочь им преодолеть эту стену: эхо гравитационных волн. Астрофизики стремятся обнаружить его следы в реликтовом излучении. В 2014 году группа американских исследователей опубликовала в знаменитом журнале Nature результаты наблюдений реликтового излучения по программе BICEP2 (Background Imaging of Cosmic Extragalactic Polarization). В полученных данных, казалось, обнаружились следы, оставленные первичными гравитационными волнами в реликтовом излучении. Вскоре, однако, измерения, выполненные европейским космическим зондом «Планк», показали, что это были всего лишь следы межзвездной пыли. К концу 2030-х годов планируется запуск специальной космической обсерватории, чтобы обнаружить первичные гравитационные волны, собрать информацию о планковской эпохе и первых мгновениях развития Вселенной.


☛ СМ. ТАКЖЕ

Квантовая гравитация (Начало расширения)

Вселенная становится прозрачной (380 тысяч лет после начала расширения)

Регистрация гравитационных волн (2016)

Регистрация гравитационных волн в космосе (2035)

10–35 секунд после начала расширения

Инфляция

Вероятно, именно благодаря фазе ускоренного расширения Вселенная обрела достаточно внушительные размеры, а наблюдаемая ее часть стала удивительно однородной, изотропной и плоской.

Всматриваясь в небо со всех возможных точек, астрономы убедились, что наблюдаемая ими Вселенная не только однородная и изотропная, но также пространственно-плоская. Однородность Вселенной означает, что на больших масштабах плотность материи в ней всюду примерно одинакова. Изотропность предполагает, что, аналогично, на очень больших масштабах структура наблюдаемой Вселенной повсюду идентична, каким бы ни было направление луча зрения. Другими словами, у Вселенной нет центра. А выражение «плоская Вселенная» значит, что на любых масштабах сумма углов треугольника равна ста восьмидесяти градусам – будь Вселенная, к примеру, сферической, это было бы не так. Наблюдения того же реликтового излучения, называемого еще «космическим микроволновым фоном», которые недавно были выполнены европейским космическим зондом «Планк», подтвердили все три характеристики.

Однако, чтобы эти выводы согласовывались с теорией Большого взрыва, следует допустить, что сразу после планковской эпохи за ничтожно малую долю секунды размер Вселенной с огромной скоростью увеличился в невероятно огромное количество раз: 1050 (единица с пятьюдесятью нулями!). В результате этого мощного раздувания – инфляции – микроскопический объем однородной первичной Вселенной увеличился до огромных размеров, гораздо больших, чем те, в которых мы способны наблюдать ее сейчас. И она не стала при этом менее однородной. Космическая инфляция определила и плоский характер Вселенной, напоминающей надуваемый воздушный шар. Вначале такой шар имеет вполне явную кривизну, но чем больше он раздувается, достигая, к примеру, размеров нашей планеты, тем существеннее сглаживается кривизна, почти исчезая под конец. Ведь и Земля нам кажется плоской, когда мы на ней стоим?