banner banner banner
Квантовая химия в примерах
Квантовая химия в примерах
Оценить:
 Рейтинг: 0

Квантовая химия в примерах


10 – номер последнего химического элемента, находящегося на предыдущем уровне h=2;

– 10 – количество свободных потенциальных ям, расположенных на незаполненном 3d

подуровне.

Вычислим сумму крестиков, входящих в состав иона магния Mg, тогда:

Mg=48-8-10=30.

Расчётные параметры для гелия He и фтора F были определены в примерах 4.1 и 4.2 соответственно.

Структура MgF

He продемонстрирована на иллюстрациях 4.5 и 4.6.

Рисунок 4.5 Вид «сверху» для структуры MgF

He.

Рисунок 4.6 Вид «спереди» для кристалла MgF

He.

Моделируемое в этом примере химическое соединение является проводником электрического тока, поскольку в процессе поиска наиболее компактной структуры MgF

He произошло заполнение 4s

подуровня, входящего в состав орбитальной диаграммы атома Mg.

Пример 4.4. H

S

Определим сумму треугольников для водорода H и серы S, тогда:

H=1;

S=48-30-16+10—10=2

где 48 – расчётное количество потенциальных ям, расположенных на оболочке куба (атома) уровня h=3 (см. таблицу 2.1 столбец 3);

30 – трёхкратное количество электронов, зафиксированных на предыдущих оболочках куба (атома) уровней h=1 и h=2;

16 – порядковый номер серы S, определяемый согласно таблице Менделеева;

10 – номер последнего химического элемента, находящегося на предыдущем уровне h=2;

– 10 – количество свободных потенциальных ям, расположенных на незаполненном 3d

подуровне.

Вычислим общее число крестиков, следовательно:

S=48-2-10=36;

H=1.

По своим свойствам химическое соединение H

S является высокотемпературным сверхпроводником.

Рассматриваемое в этом примере вещество возможно синтезировать в природе из сульфида водорода H

S, если повысить давление до 1,5 млн. атмосфер и понизить температуру до —70° C. При данных термодинамических параметрах кристаллическая решётка H

S будет иметь нулевое электрическое сопротивление, что приведёт к появлению сверхпроводимости внутри исследуемого опытного образца.

Структура H

S продемонстрирована на чертежах 4.7 и 4.8.

Рисунок 4.7 Вид «спереди» для кристалла H

S.

Рисунок 4.8 Вид «сверху» для кристалла H

S.

Пример 4.5. Пентазолат натрия

В современных научных исследованиях часто поднимается вопрос о хранении тех или иных материалов, которые в нормальных условиях окружающей среды не образуют чистых стабильных соединений. Пентазол HN

является таковым материалом, а вещество, которое способно удерживать атомы рассматриваемой молекулы в стабильном состоянии, носит название пентазолата натрия.

Пентазол имеет следующую химическую структуру:

Рисунок 4.9 Структурная формула пентазола HN

.

Прежде чем приступить к доказательству того, что молекула пентазола не может быть получена в чистом виде на практике, необходимо определить количество свободных потенциальных ям, участвующих в химическом взаимодействии атомов.

Вычислим сумму треугольников для азота, следовательно:

N=14-7-6+2=3

где 14 – расчётное количество потенциальных ям, расположенных на оболочке куба (атома) уровня h=2 (см. таблицу 2.1 столбец 3);