Discover the many new and emerging applications of supercritical water as a green solvent Drawing from thousands of original research articles, this book reviews and summarizes what is currently known about the properties and uses of supercritical water. In particular, it focuses on new and emerging applications of supercritical water as a green solvent, including the catalytic conversion of biomass into fuels and the oxidation of hazardous materials. Supercritical Water begins with an introduction that defines supercritical fluids in general. It then defines supercritical water in particular, using the saturation curve to illustrate its relationship to regular water. Following this introduction, the book: Describes the bulk macroscopic properties of supercritical water, using equations of state to explain temperature-pressure-density relationships Examines supercritical water's molecular properties, setting forth the latest experimental data as well as computer simulations that shed new light on structure and dynamics Explores the solubilities of gases, organic substances, salts, and ions in supercritical water in terms of the relevant phase equilibria Sets forth the practical uses of supercritical water at both small scales and full industrial scales Throughout the book, the author uses tables for at-a-glance reviews of key information. Summaries at the end of each chapter reinforce core principles, and references to original research and reviews serve as a gateway and guide to the extensive literature in the field. Supercritical Water is written for students and professionals in physical chemistry, chemistry of water, chemical engineering, and organic chemistry, interested in exploring the applications and properties of supercritical water.