Книга Faraday: The Life - читать онлайн бесплатно, автор James Hamilton. Cтраница 5
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
Faraday: The Life
Faraday: The Life
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

Faraday: The Life

From 11 October to 7 December there is a pause in the letters Faraday sent to Abbott. He broke his silence on 7 December, apologising that he had six unanswered letters from Abbott in his portfolio. He pleaded ‘inability’, which covers a multitude of possibilities, but which may suggest that while he was being loaded with bookbinding work by his ‘disagreeable master’,37 he was also taking on as much secretarial work as he could for Sir Humphry. His new employer de la Roche evidently got wind of Faraday’s ambitions in science, and for that reason perhaps gave him ‘so much trouble that he felt he could not remain in his place’.38 Nevertheless de la Roche, who had no children himself, made Faraday an offer that he thought the young man could not easily refuse. Impressed by Faraday’s bookbinding skills, he promised ‘on certain conditions’ to transfer his business to him, and ‘thus to make him a Man of Property’.39 This Faraday did refuse, despite the risk of immediately running foul of de la Roche’s passions, but having been brought up by Sandemanian parents, he would have found it easy to resist becoming a man of property, and thus have the vote, two civic distinctions which Sandemanians treated with disdain.

Faraday now found himself in a very difficult and uncertain personal position. In one corner he had an unpredictable master whom he had unwisely frustrated; in another the teachings of a church which he respected; in a third he faced impending poverty in the all-too-real possibility of losing his bookbinding job; and in a fourth he had to consider the money he gave to his widowed mother, a landlady in straitened circumstances. Colouring all this in a gloomy sweep of pallid grey was his lack of ready patronage, and no sign of permanent work in science, the one sphere which truly attracted him. The only chink of light was his brief employment with Davy, and the mild interest that Sir Humphry was showing in him. But even Davy, who had after all been Faraday’s second choice of employer after Sir Joseph Banks, had advised Faraday to stick to the bookbinding in the long run.40 No correspondence from or to Faraday survives from the first two months of 1813, but on 19 February there was a punch-up at the Royal Institution, and out of this petty but violent incident Michael Faraday got the job in science that he coveted, and the future began.

During the year following Davy’s resignation the day-to-day management of the Royal Institution was in the hands of the new Professor of Chemistry, William Thomas Brande. He was an uncharismatic, plodding man, who was described in later years as giving lectures that were ‘eminently sound and useful’, and, in a remarkable sequence of negatives that give a half-hearted cheer to him as Sir Humphry Davy’s successor, ‘he was never brilliant or eloquent, but his experiments never failed’.41 Brande expected his lectures to be set up carefully for him, with all the necessary instruments, chemicals and illustrations in place. The laboratory assistant William Payne seems to have failed to do the job properly on 19 February, and the Institution’s instrument-maker John Newman told him so. Payne punched Newman; they shouted and brawled; the superintendent William Harris heard the ‘great noise’, and came to investigate. Newman complained to Harris that Payne had hit him, Harris rose to his full height and charged Payne with the offence, and Payne went off muttering imprecations. The Royal Institution Managers were told of this at their meeting three days later, and Payne was sacked.42

As Honorary Professor of Chemistry, Davy took the initiative for finding somebody to fill the gap, and Michael Faraday came to mind. So, quite late in the evening of 22 February, a gleaming carriage with a footman up on the box beside the driver made its way down Weymouth Street, and stopped outside number 18.43 The horses pawed and shuddered in the cold evening air, and blew explosively through their nostrils. The footman climbed down carrying a note, and banged hard on the door. Looking down from his room, where he was undressing for bed, Faraday heard somebody in the house open the door, and heard too a muffled conversation. The door closed softly, and the carriage rolled away into the night. ‘A letter has come from Sir Humphry Davy for Mike!’ somebody said, and ran up with it to Faraday’s room. Faraday broke the seal and read that Sir Humphry Davy requested that Mr Michael Faraday call on him at the Royal Institution the following morning. And then, perhaps, Michael Faraday went, as he had planned, to bed.44

We know all this from Benjamin Abbott, who will certainly have been told of it in excited tones by Faraday in the days following. Faraday might also have described to Abbott the interview with Davy, which apparently took place in the anteroom to the lecture theatre, by the window nearest to the corridor.45 Both Davy and Faraday recalled their earlier interview in the same room, by the same window. Davy had warned Faraday then about the dangers of giving up a secure trade, for which there would always be a need, for the insecure profession of science.

‘Science is a harsh mistress,’ Faraday recalled Davy saying, remembering as he did so that that was a phrase of Sir Isaac Newton’s. Davy went on to warn the young man that science ‘poorly rewarded those who devoted themselves to her service’.

‘But philosophic men,’ Faraday rejoined spiritedly, ‘learn to cultivate superior moral feelings.’

Davy smiled at this idealism, thinking of some of the charlatans he had met and the priority disputes he had experienced in his years in science. ‘I will leave the experience of a few years to set you right on that matter.’46

This morning, however, Davy did not try to dissuade Faraday. He urgently needed somebody reliable to replace Payne, and Michael Faraday had the ability and enthusiasm for the task.

‘Are you of the same mind as you were when you called on me last year?’ he asked.

‘I am sir.’

‘Then I will offer you the place of assistant in the laboratory of the Royal Institution, in the situation of Mr William Payne, lately employed here. Will you accept?’

Faraday grinned with delight, shook Sir Humphry’s hand warmly, and walked briskly out of the Royal Institution into Albemarle Street. At the next meeting of the Managers, on 1 March, Sir Humphry Davy drew attention to the vacancy and said:

I have the honour to inform you that I have found a person who is desirous to occupy the situation in the Institution lately filled by William Payne. His name is Michael Faraday. He is a youth of twenty-two years of age. As far as I have been able to ascertain, he appears well fitted for the situation. His habits seem good, his disposition is active and cheerful, his manner intelligent. He is willing to engage himself on the same terms as those given to Mr Payne at the time of quitting the Institution.

The Managers considered the matter, looked enquiringly at one another, and the chairman, Charles Hatchett, announced: ‘We resolve that Michael Faraday be engaged to fill the situation lately occupied by Mr Payne on the same terms.’47

That is the brisk report of Faraday’s engagement according to the minutes of the Royal Institution. In between the offer and the formal engagement, however, Faraday courageously and sensibly negotiated the terms he would accept. Notwithstanding how rapidly his luck had compounded over the past few days, he pressed Davy for the best deal possible. This led to the final agreement, which echoed the one that Davy himself had reached with the Managers in 1801.48 Faraday was to be provided with a regular supply of aprons by the Institution, and allowed the use of the laboratory apparatus for his own experiments. Further, he was to be given two attic rooms in 21 Albemarle Street, as much coal and candles as he needed for heat and light, and a salary of one guinea a week. This was a cut from his pay as a young bookbinder, but with accommodation, aprons, candles and heating thrown in it was worth much more.49 The post that Faraday had been given was later described as ‘Fire-Lighter, Sweeper, Apparatus-cleaner and washer’, or ‘Fag and Scrub’.50 That is the basic, lowest-of-the-low runabout servant’s job that might by one kind of character be considered a dead end, but by another a door opening onto a broad, bright new life of learning and discovery.

Faraday gave his notice to de la Roche, and took up his duties at the Royal Institution straight away. Released from the pressures he had been under with the bookbinder, he immediately felt the illusion of greater leisure. Davy and his colleagues may have introduced him gradually to his new responsibilities, but whether or not this was the case, he was now doing what he had longed to do. A week after starting at the Royal Institution he wrote his first letter to Abbott for three months, and looked forward to the pleasures of a ‘recommenced & reinvigorated correspondence’.51 He reread Abbott’s past letters – there had been five since December which he had not answered – and mused on what he might have been doing in his old life: ‘It is now about 9 o’clock & the thought strikes me that the tongues are going both at Tatum’s and at the Lecture in Bedford Street but I fancy myself much better employed than I should have been at the Lecture at either of these places.’

Then he runs through for Abbott a typical day at the Royal Institution: he has assisted John Powell at a thinly-attended Mechanics lecture on rotatory motion – he ‘had a finger in it (I can’t say an hand for I did very little)’, and has been working with Sir Humphry on extracting sugar from beet, an extremely important piece of research, because the threat of French naval blockades still hampered the import of sugar from the West Indies. He and Davy were also ‘making a compound of Sulphur & Carbon’, that is, carbon disulphide, ‘which has lately occupied in considerable degree the attention of chemists’.52 Jöns Berzelius and Alexander Marcet’s article on ‘sulphuret of carbon’ had just been published in the Royal Society’s Philosophical Transactions, and already Davy was testing the procedure for himself, and giving Faraday further insight into laboratory practice.

Davy had been very specific about Faraday’s duties, the times he would be required in attendance, and when he would have time off. Faraday was able to go home to see his mother and family in Weymouth Street on most evenings, but knew that he could not join Abbott on the coming Wednesday at the City Philosophical Society because ‘I shall be occupied until late in the afternoon by Sr H Davy & must therefore decline seeing you at that time’. Nonetheless he hopes and expects to see his friend every Sunday as far as possible.

There is a perceptible change in tone from the earlier set of letters to those Faraday wrote to Abbott over the next six months, a growing self-confidence as he spent his days beside Davy in the laboratory, and a stronger philosophising manner in which he uses the letters to outline his developing views. One letter, which he describes as ‘patch work’, he claimed to have begun with no connected thought in his head, ending it with an analysis of man, as if ‘man’ were a chemical compound: ‘compound’, indeed, is the keyword:

What a singular compound is man – what strange and contradictory ingredients enter into his composition – and how completely each one predominates for a time according as it is favoured by the tone of the mind and senses and other existing circumstances.53

Faraday lists man’s ‘contradictory ingredients’ as ‘grave circumspect & cautious’ and ‘silly headstrong & careless’; ‘conscious of his dignity’ and ‘beneath the level of the beasts’; ‘free frivolous & open his tongue’, then ‘ashamed of his former behaviour’. There is a maturity in this reflection which already marks out the self-educated young man. Faraday’s life had changed radically in the past few weeks. At twenty-two years of age he had been reborn as a natural philosopher newly apprenticed to the greatest teacher of the subject in the land.

Faraday’s rooms high up at the back of 21 Albemarle Street overlooked Jacques Hotel in Bond Street, a noisy place of parties and dinners, music and dancing. The night before he philosophised to Abbott about the ingredients of man he was distracted from the beginning of his letter by loud music from a ‘grand party dinner’ at the hotel. An orchestra had been hired to play that evening, ‘bassoons violins clarinets trumpets serpents and all other accessories to good music’, and with every new piece they played, Faraday could not ‘for the life of me help running … to the window to hear them’.54 His natural jollity and good humour, his love of good companionship that had led him to play the flute and know ‘a hundred songs by heart’,55 to enjoy fireworks in Ranelagh Gardens and any number of river and country outings, led him also to share with his friend his excitement at the changes in his life, which had flowed directly from his determination to follow science.

Once he had been shown the door into the Royal Institution, everything that happened subsequently to Faraday came as a result of his own efforts, determination and self-possession. The letters to Abbott amply demonstrate the calibre of the intellect that Riebau had taken on as an apprentice, and that Sir Humphry Davy had now engaged. Within three months of starting as Davy’s assistant, Faraday had become by observation as much an expert on lectures and lecturing techniques as anybody in London. There are four long letters to Abbott which examine in detail the finer and the coarser points of the art of lecturing, and consider too a lecturer’s needs, his equipment, illustrations, the design of the lecture theatre, its ventilation, seating, sight-lines, and entrance and exit arrangements. The most extraordinary thing about this is that Faraday, who had done no public lecturing himself, and who had not experienced any university lecturing, with its syllabuses, regular classes and so on, should so rapidly find the key to clarity in an art that was so widely abused. His notes, since they were first published in 1870,56 have for more than a hundred years been widely and influentially used as benchmarks to guide aspiring lecturers. The only other person in Faraday’s ken who had come to lecturing afresh was Sir Humphry Davy himself in his professional journey from Penzance and Bristol to London. Between them they comprised the new wave of lecturing techniques, and re-invented the art.

Sir Humphry Davy threw Faraday in at the deep end. A month after he had begun at the Royal Institution, Faraday was working with Davy on the same nitrogen trichloride that had blown Dulong’s finger off, and sent glass into Davy’s eye. Faraday coolly told Abbott, ‘I have been engaged this afternoon in assisting Sr H in his experiments on it during which we had two or three unexpected explosions.’57

We know practically all there is to know about how to make nitrogen trichloride from Faraday’s letters to Abbott. The new explosive had great military potential, and, from the post-Cold War perspective of two hundred years later, it is revealing how unconcerned Davy, a man of the establishment and deeply anti-French, was about the security of information about the explosive.

Davy may not have given his assistant much warning about what might happen when the greasy, butter-like compound, which smelt curiously of almonds, was put into a basin of water, and then phosphorus was added to it. They concocted the compound itself the same day by making up solutions of ammonium nitrate and ammonium chloride, and then, using a scrupulously clean air jar, inverting over them some ‘fresh made pure clean’ chlorine gas. There is a note of triumph in the expression of that recipe – Davy was inordinately proud of chlorine. There must be no trace of oil, grease or any other impurities anywhere in the equipment, and it was Faraday’s job to see that everything was spotless. By now Davy was fully confident of his assistant’s care and dexterity in handling fragile laboratory equipment, his attention to detail and his physical bravery. A month after taking Faraday on Davy was prepared to trust his young assistant to work side by side at the bench with him on murderous substances.

Davy and Faraday began by keeping the ammonium solutions as cold as possible by surrounding the basins with ice, but soon they relaxed that operation as they found it slowed the process down. When the chlorine came into contact with the solution, the liquid began to rise dramatically up the jar, and drops of yellow oil rose and then gently dropped down into the liquid to lie as an oily layer at the bottom. They found slightly different rates of absorption between the nitrate and the chloride, but the compound that lurked at the bottom of the retort was more or less the same in both versions of the experiment.

Having formed itself, this compound then began to give off nitrogen very actively. The liquid seethed with a sharp, stinging smell, ‘bringing forth tears in abundance it excites also a very disagreeable sensation in the nostrils and lungs’. When separated from the liquid the compound solidified in a buttery way, and lay pregnant with potential on its dish. This was where the excitement began again. Davy and Faraday put a tiny piece of it into some water and dropped some phosphorus into the basin. Suddenly, bang! – the whole thing exploded, shattering the basin and throwing glass, earthenware, water and the remains of the evil compound up into the air and everywhere. The two men were shocked, but slowly raised their heads above the bench as the clink of precipitated glass fragments died away. They tried once more to tame the beast by reversing the process and adding the compound to the phosphoric solution. This made a sudden flame, but there was no explosion. While they were doing the experiment, Davy blithely reminded his assistant how he had nearly blinded himself the past autumn by trying to heat it up.

Another of Faraday’s jobs that afternoon was to collect the compound together from the various retorts and basins. This he did very gingerly, knowing its explosive power in combination. Davy was not discouraged by the dangers – they seemed to empower him – and this gave confidence to his assistant. Together they set to work again on new ways of attacking the chloride of nitrogen. They tried mixing hydrochloric acid with it in a glass tube, and this caused a rush of gas out of the liquid, filling the tube with bubbles ‘which expanded as they ascended in a beautifull manner to fourteen or fifteen times their original bulk and the tube quickly became full of this gas’. The gas was piped to a trough of water, and its smell and colour immediately revealed it to be chlorine, with a tiny admixture of oxygen. The resulting precipitate was ammonium chlorate. They tried the trick again, this time with nitric acid, and nitrogen alone came off. Then they tried a third time, with a solution of potash. For a fourth time, Davy told Faraday to do it with ammonia, and this immediately produced thick acrid smoke, ammonium chloride, which filled the laboratory, making them both choke violently. Once the smoke had cleared they took some more glass bowls and tubes and tried again with ammonia. The smaller tubes constrained the reaction, but in an instant the whole lot exploded. That brought the experiments to an end, and it was Faraday who had to clear up the mess.

The next day they tried again, this time with yet more violent results. There were four big explosions in the laboratory that day,58 audible throughout the building. Perhaps they caused some alarm, and staff ran downstairs to see what had happened; or perhaps the Royal Institution, being used to the Professor’s stinks and bangs, took little notice. So the Professor and his new boy carried on, undaunted, ducking down behind the bench when they felt the need. They wore glass masks, which were some protection, but the day’s work came to an abrupt end when Faraday had his hand nearly blown apart. The tube he was looking at rather too closely exploded in front of his face, blew violently out of his hand, shattered his mask and took part of his fingernail with it.

Working side by side, the two men were the vanguard, the thin line between the known and the unknown. In his first Elements lecture, Davy stressed the importance of instruments, and the progress that had been made in chemical discovery simply through the development of new, better and yet more ingenious pieces of equipment. ‘Nothing,’ he wrote, ‘tends so much to the advancement of knowledge as the application of a new instrument.’59 Davy was a gadgets man, perfectly at home with glass tubes, bottles and retorts, ground glass stoppers and brass taps and mounts, jointing them together like infinitely variable skeletal remains, with gutta percha, caoutchouc, string or wax or a combination of some of these, though safety was never taken much notice of.

We know nothing of the talk that went on between Davy and his assistant in the laboratory. Davy, who had recently enlarged and published his Elements of Chemical Philosophy lectures, cannot possibly have been silent about them to his companion as they worked together. In a later remark, Faraday described Davy as ‘a mine inexhaustible of knowledge & improvement’,60 and it is likely that that knowledge and improvement will have emerged, by demonstration and example, from the mine from their first day together. Davy will have shown Faraday the importance and efficacy of accurate and accurately-made instruments. Engravings in the back of the Elements volume suggest that the equipment was neat and precise, but the reality at Davy’s chaotic bench, where instruments might have to be devised on the spot at speed, was rather different. Davy, quick in movement, might carry on several unconnected experiments at the same time, and ‘was perfectly reckless of his apparatus, breaking and destroying a part in order to meet some want of the moment … With Davy, rapidity was power.’61

Faraday, who was himself already an expert maker of electrical equipment, was more careful and circumspect, perhaps shocked by Davy’s bullish approach. But he had much to tell Davy about his own experiences with batteries, electrolysis, the making of crystals and so on, and with two such articulate and involved men on common ground the talk cannot have been idle.

The importance of chemistry, its role as a civilising force in world affairs, was a topic that Davy had written about extensively. Chemistry in the early nineteenth century had been shown by Davy to be the key to industrial and economic progress in peace and war. The manufacture of porcelain and glass, dyeing and tanning, advances in medicine and agriculture, improvements in the composition and manufacture of gunpowder, were all dependent on the growth of chemical knowledge, and that, in its turn, depended on the progress that Sir Humphry Davy was personally making in his laboratory in the Royal Institution basement. In his correspondence with Abbott Faraday revealed that his own private experiments were careful and ordered, and followed more or less a course of self-improvement in science. What may once have seemed to Faraday, through Tatum’s lectures and his conversations with friends, to be an involved and complex subject, dissolved through talk with Davy into a perspective of reasoned, reassuring and repeatable processes. Davy saw the simplicity of the subject, the inter-connectedness of chemical laws, and he put this across clearly in his writings:

It is indeed a double source of interest in this science, that whilst it is connected with the grand operations of nature, it is likewise subservient to the common processes as well as the most refined arts of life … Complexity almost always belongs to the early epochs of any science; and the grandest results are usually obtained by the most simple means.62

In putting the discipline to which he had dedicated his life and health into its place, Davy brought comfort and reassurance to Faraday, quite as much as he imparted knowledge. Working and talking with Davy, Faraday found a structure for his knowledge, and a purpose for acquiring and categorising it. He now had somebody with whom to share his instinctive appreciation of the visual beauty of chemicals – the sheer, relentless black of carbon, the yellow of sulphur, purple of potassium – and their changes in colour, nature, texture, state, even taste if they were bold enough, that took place in reactions in the laboratory. The harmony, novelty and magic of the chemical names that tripped upon the tongue – silicium, aluminium, zirconium, ittrium, glucium, manganese, zinc, tin, iron, lead, antimony, bismuth, tellurium, cobalt, copper, nickel, palladium, uranium, osmium, tungsten, titanium, columbium, cerium, iridium, rhodium, mercury, silver, gold, platina (now ‘platinum’) – all these wonderful names had run in their turn from Davy’s own pen,63 and through the smoke and fume of experiment many must have found their moment in conversation.