Книга Эгоистичный ген - читать онлайн бесплатно, автор Ричард Докинз. Cтраница 4
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
Эгоистичный ген
Эгоистичный ген
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

Эгоистичный ген

Процессы, аналогичные описанным, должны были дать начало “первичному бульону”, из которого, как полагают биологи и химики, состояли моря 3000–4000 миллионов лет назад. Органические вещества стали концентрироваться в отдельных участках, вероятно в высыхающей пене по берегам, или же в крошечных суспендированных капельках. В результате дальнейшего воздействия энергии, такой, как ультрафиолетовое излучение Солнца, они объединялись в более крупные молекулы. В наши дни большие органические молекулы не могли бы сохраняться достаточно долго, чтобы оказаться замеченными: они были бы быстро поглощены или разрушены бактериями или другими живыми существами. Но бактерии и прочие организмы появились гораздо позднее, а в то далекое время большие органические молекулы могли в целости и сохранности дрейфовать в густеющем бульоне.

В какой-то момент случайно образовалась замечательная молекула. Мы назовем ее репликатором. Это не обязательно была самая большая или самая сложная из всех существовавших тогда молекул, но она обладала необыкновенным свойством – способностью создавать копии самой себя. Может показаться, что такое событие вряд ли могло произойти. И в самом деле, оно было крайне маловероятным. В масштабах времени, отпущенного каждому человеку, события, вероятность которых так мала, следует считать практически невозможными. Именно поэтому вам никогда не удастся получить большой выигрыш в футбольном тотализаторе. Но мы, люди, в своих оценках вероятного и невероятного не привыкли оперировать сотнями миллионов лет. Если бы вы заполняли купоны тотализатора еженедельно на протяжении ста миллионов лет, вы, по всей вероятности, сорвали бы несколько больших кушей.

На самом деле вообразить молекулу, которая создает собственные копии, вовсе не так трудно, как это кажется сначала, да и возникнуть она должна всего один раз. Представьте себе репликатор как форму для отливки или матрицу, как большую молекулу, состоящую из сложной цепи разного рода более мелких молекул, играющих роль строительных блоков. Эти блоки в изобилии содержались в бульоне, окружавшем репликатор. Допустим теперь, что каждый строительный блок обладал сродством к другим блокам одного с ним рода. В таком случае всякий раз, когда какой-нибудь строительный блок, находившийся в бульоне, оказывался возле той части репликатора, к которому у него было сродство, он там и оставался. Прикрепляющиеся таким образом строительные блоки автоматически располагались в той же последовательности, что и блоки репликатора. Поэтому легко представить себе, что они соединялись друг с другом, образуя стабильную цепь, подобно тому, как это происходило при образовании самого репликатора. Этот процесс может продолжаться в форме постепенного наложения одного слоя на другой. Именно так образуются кристаллы. Но две цепи могут и разойтись, и в таком случае получатся два репликатора, каждый из которых будет продолжать создавать копии.

Более сложная возможность заключается в том, что каждый строительный блок обладает сродством не к таким же, а к другого рода блокам, причем это сродство взаимно. В таком случае репликатор выступает в качестве матрицы для образования не идентичной копии, а некоего “негатива”, который в свою очередь вновь создает копию исходного “позитива”. Для наших целей не имеет значения, относился ли первоначальный процесс репликации к типу “позитив – негатив” или “позитив – позитив”, хотя следует отметить, что современные эквиваленты первого репликатора – молекулы ДНК – реплицируются по типу “позитив – негатив”. Важно то, что в мир пришла новая форма “стабильности”. Прежде особого обилия сложных молекул какого-то одного типа в бульоне, по всей вероятности, не было, потому что образование молекул каждого типа зависело от случайного соединения строительных блоков в ту или иную определенную конфигурацию. С возникновением репликатора его копии, вероятно, быстро распространялись в морях, пока запасы молекул, составляющих мелкие строительные блоки, не начали истощаться и другие крупные молекулы не стали образовываться все реже. Итак, мы, кажется, получили обширную популяцию идентичных копий. Однако теперь следует сказать об одном важном свойстве любого процесса копирования: оно несовершенно. Случаются ошибки. Я надеюсь, что в этой книге нет опечаток, но при внимательном чтении одну-две вы, возможно, обнаружите. Они, вероятно, не приводят к серьезным искажениям текста, потому что это ошибки “первого поколения”. Представьте себе, однако, что происходило в те времена, когда книгопечатания еще не было и такие книги, как Библия, переписывали от руки. Все переписчики, как бы они ни были внимательны, неизбежно делали сколько-то ошибок, а некоторые даже были склонны сознательно вносить небольшие “улучшения”. Если бы все они переписывали с одного оригинала, искажения смысла были бы незначительными. Но как только копии начинают делать с других копий, которые в свое время также были сделаны с копий, ошибки накапливаются, и дело принимает серьезный оборот. Мы считаем, что ошибки при копировании – это плохо, и, если речь идет об исторических документах, трудно представить себе примеры, когда ошибки можно было бы назвать улучшениями. Однако когда при переводе Септуагинты неверно перевели еврейское слово, означающее “молодая женщина”, греческим словом, означающим “девственница”, в результате чего получилось пророчество “Се, Дева во чреве примет и родит Сына”[7], то можно по меньшей мере сказать, что это положило начало чему-то значительному. Во всяком случае, как мы увидим, ошибки, допускаемые биологическими репликаторами при копировании, могут привести к реальным улучшениям, и для прогрессивной эволюции жизни возникновение некоторого количества ошибок имело существенное значение. Мы не знаем, насколько точно исходные молекулы репликатора создавали свои копии. Их современные потомки, молекулы ДНК, удивительно добросовестны по сравнению с большинством точнейших механизмов копирования, созданных человеком, но даже они время от времени допускают ошибки, и в итоге именно эти ошибки делают возможной эволюцию. Вероятно, исходные репликаторы допускали гораздо больше ошибок, но в любом случае мы можем быть уверены, что ошибки совершались и что они были кумулятивными.

По мере того, как возникали и множились ошибки копирования, первобытный бульон наполнялся не идентичными репликами, а реплицирующимися молекулами нескольких разных типов, “происходивших” от одного и того же предка. Были ли некоторые типы более многочисленны, чем другие? Почти наверное да. Одни типы несомненно изначально обладали большей стабильностью, чем другие. Среди уже образовавшихся молекул вероятность распада для одних была ниже, чем для других. Молекул первого типа в бульоне становилось относительно больше не только потому, что это логически следует из их “долголетия”, но также потому, что они располагали большим временем для самокопирования. Поэтому долгоживущие репликаторы оказывались более многочисленными и, при прочих равных условиях, в популяции макромолекул должно было возникнуть “эволюционное направление” в сторону большей продолжительности жизни.

Однако прочие условия, по всей вероятности, не были равными, и еще одним свойством одного из типов репликатора, которое должно было играть даже более важную роль в его распространении в популяции, оказалась скорость репликации, или “плодовитость”. Если молекулы репликатора типа А создают свои копии в среднем один раз в неделю, а типа B – один раз в час, то нетрудно понять, что очень скоро число молекул типа В сильно превысит число молекул типа A, даже если молекулы А “живут” гораздо дольше, чем В. Поэтому в бульоне, по-видимому, существовало “эволюционное направление”, ведущее к более высокой “плодовитости” молекул. Третий признак молекул-репликаторов, который должен был сохраняться отбором, – точность репликации. Если молекулы типа X и типа Y выживают в течение некоторого времени и реплицируются с постоянной скоростью, причем молекулы X совершают по одной ошибке при каждой десятой репликации, а молекулы Y – при каждой сотой, то очевидно, что численность молекул Y будет возрастать. Контингент молекул X в популяции теряет не только самих “заблудших детей”, но и всех их фактических или потенциальных потомков.

Тем, кто уже знает кое-что об эволюции, последнее замечание может показаться несколько парадоксальным. Можем ли мы примирить представление об ошибках копирования как о важной предпосылке, обеспечивающей возможность эволюции, с утверждением, что естественный отбор благоприятствует точности копирования? Ответ состоит в том, что хотя мы воспринимаем, пусть не вполне четко, эволюцию как нечто хорошее (тем более что сами являемся ее продуктами), в действительности ничто на свете не “хочет” эволюционировать. Эволюция просто происходит, хотим мы этого или нет, несмотря на все усилия репликаторов (а в наши дни – генов) предотвратить ее. Жак Люсьен Моно очень четко сказал об этом в своей Спенсеровской лекции, предварительно саркастически заметив: “У эволюционной теории имеется еще один любопытный аспект – каждый полагает, что он понимает ее”.

Вернемся к первичному бульону. По-видимому, его стали заселять стабильные разновидности молекул: стабильные в том смысле, что отдельные молекулы либо сохранялись в течение длительного времени, либо быстро реплицировались, либо реплицировались очень точно. Эволюционные направления, ведущие к стабильности этих трех типов, выражались в следующем: если бы вы взяли пробы бульона в два разных момента времени, то вторая проба содержала бы больше типов с высокими продолжительностью жизни, плодовитостью и точностью копирования. Это, в сущности, то, что имеет в виду биолог, говоря об эволюции применительно к живым организмам. И совершается она с помощью того же самого механизма – естественного отбора.

Должны ли мы в таком случае называть эти первоначальные молекулы-репликаторы “живыми”? Да какая разница! Допустим, я скажу: “Величайшим из когда-либо живших на земле людей был Дарвин”, а вы возразите: “Нет, Ньютон”, но я надеюсь, что наш спор на этом прекратится. Мысль моя заключается в том, что как бы ни разрешился наш спор, ни один важный вывод от этого не изменится. В истории жизни и свершений Ньютона и Дарвина не произойдет никаких изменений независимо от того, будем мы называть их “великими” или нет. Точно так же история молекул-репликаторов, возможно, протекала примерно так, как я это описываю, независимо от того, будем ли мы называть их “живыми”. Причина извечных мучений человечества заключается в неспособности слишком многих из нас понять, что слова – это лишь орудия, существующие для того, чтобы ими пользоваться, и что если в словаре имеется такое слово, как “живой”, то из этого вовсе не следует, что оно обозначает нечто определенное в реальном мире. Будем мы называть первичные репликаторы живыми или нет, они были нашими предками, нашими родоначальниками.

Следующее важное звено в наших рассуждениях, на которое делал упор сам Дарвин (хотя он имел в виду растения и животных), – это конкуренция. Первичный бульон не мог обеспечить существование бесконечного числа молекул-репликаторов. Не говоря уже о конечных размерах Земли, важную роль должны были играть другие лимитирующие факторы. Описывая репликатор как матрицу или форму для отливки, мы предполагали, что он был погружен в бульон, богатый мелкими строительными блоками, то есть молекулами, необходимыми для создания копий. Но с возрастанием численности репликаторов эти блоки стали использоваться с такой скоростью, что очень быстро оказались дефицитным и дорогостоящим ресурсом. Репликаторы разных типов или штаммов конкурировали за них. Мы рассматривали факторы, которые могли участвовать в увеличении численности репликаторов предпочтительных типов. Теперь мы видим, что репликаторы, которым отбор благоприятствовал в меньшей степени, должны были действительно стать в результате отбора менее многочисленными и в конечном счете многие их линии должны были вымереть. Между разными типами репликаторов шла борьба за существование. Они не знали, что они борются, и не беспокоились об этом. Борьба шла без недобрых чувств, да и в сущности вообще безо всяких чувств. Но они боролись в том смысле, что любая ошибка копирования, в результате которой создавался новый, более высокий уровень стабильности или новый способ, позволяющий снизить стабильность противников, автоматически сохранялась и размножалась. Процесс совершенствования был кумулятивным. Способы повышения собственной стабильности или снижения стабильности противников становились более изощренными и эффективными. Некоторые из репликаторов могли даже “открыть” химический способ разрушения молекул противников и использовать освобождающиеся при этом строительные блоки для создания собственных копий. Такие протохищники одновременно получали пищу и устраняли конкурентов. Другие репликаторы, вероятно, открыли способ защитить себя химически или физически, отгородившись белковой стенкой. Возможно, именно так возникли первые живые клетки. Репликаторы стали не просто существовать, но и строить для себя некие контейнеры, носители, обеспечивающие им непрерывное существование. При этом выжили репликаторы, сумевшие построить для себя машины выживания, в которых можно было существовать. Первые машины выживания, вероятно, состояли всего лишь из защитной оболочки. Однако обеспечивать себе возможность существования становилось все труднее, по мере того как появлялись новые противники, обладавшие более совершенными и эффективными машинами выживания. Машины увеличивались в размерах и совершенствовались, причем процесс этот носил кумулятивный и прогрессивный характер.

Должен ли был существовать какой-то предел постепенному совершенствованию способов и материальных средств, использовавшихся репликаторами для продолжения собственного существования на свете? Времени для совершенствования, очевидно, было предостаточно. А какие фантастические механизмы самосохранения принесут грядущие тысячелетия? Какова судьба древних репликаторов теперь, спустя 4 109 лет? Они не вымерли, ибо они – непревзойденные мастера в искусстве выживания. Но не надо искать их в океане, они давно перестали свободно и непринужденно парить в его водах. Теперь они собраны в огромные колонии и находятся в полной безопасности в гигантских неуклюжих роботах[8], отгороженные от внешнего мира, общаясь с ним извилистыми непрямыми путями и воздействуя на него с помощью дистанционного управления. Они присутствуют в вас и во мне. Они создали нас, наши души и тела, и единственный смысл нашего существования – их сохранение. Они прошли длинный путь, эти репликаторы. Теперь они существуют под названием генов, а мы служим для них машинами выживания.

Глава 3. Бессмертные спирали

Мы представляем собой машины выживания, но “мы” – это не только люди. В это “мы” входят все животные, растения, бактерии и вирусы. Подсчитать общее число всех существующих на земном шаре машин выживания очень трудно. Нам неизвестно даже число видов организмов. Согласно оценкам, число ныне живущих видов одних лишь насекомых достигает примерно трех миллионов, а число отдельных особей, возможно, составляет 1018.

Разные типы машин выживания, по-видимому, сильно различаются как внешне, так и по внутреннему строению. Осьминог ничем не похож на мышь, и оба они сильно отличаются от дуба. Между тем по основному химическому составу они довольно сходны. В частности, имеющиеся у них репликаторы, то есть гены, представлены молекулами, которые в своей основе одинаковы у всех живых существ – от бактерий до слонов. Все мы служим машинами выживания для репликаторов одного и того же типа – молекул вещества, называемого ДНК, но существует много различных способов жить в этом мире, и репликаторы создали целый спектр машин выживания, позволяющих воспользоваться этими способами. Обезьяна служит машиной для сохранения генов на деревьях, рыба – для сохранения их в воде. Существует даже маленький червячок, сохраняющий гены в кружочках, подставляемых в Германии под кружки с пивом. Пути ДНК неисповедимы.

Для простоты я представляю дело так, будто нынешние гены в общем почти то же самое, что и первые репликаторы, возникшие в первобытном бульоне. На самом деле это может оказаться неверным, хотя в данном случае и неважным. Исходными репликаторами могли быть молекулы, родственные ДНК, или же молекулы совершенно иного типа. Во втором случае мы могли бы допустить, что на какой-то более поздней стадии ДНК захватила их машины выживания. Если это так, то исходные репликаторы, очевидно, были полностью уничтожены, поскольку в современных машинах выживания никаких следов от них не сохранилось. Продолжая развивать это направление, Александр Грэм Кернс-Смит высказал занятное предположение, что наши предки – первые репликаторы – были, возможно, не органическими молекулами, а неорганическими кристаллами-минералами, кусочками глины. ДНК, была ли она узурпатором или нет, сегодня, несомненно, находится у власти, если только, как я предположительно заметил в главе 11, в настоящее время не начинается новый захват власти.

Молекула ДНК представляет собой длинную цепь из строительных блоков, которыми служат небольшие молекулы – нуклеотиды. Подобно тому, как белковые молекулы – это цепи из аминокислот, ДНК – цепи из нуклеотидов. Молекула ДНК слишком мала, чтобы ее можно было увидеть, но ее точная структура была установлена с помощью остроумных косвенных методов. Она состоит из пары нуклеотидных цепей, свернутых вместе в изящную спираль – ту самую двойную спираль, “бессмертную спираль”. Нуклеотидные строительные блоки бывают только четырех типов, обозначаемых буквами А, Т, Ц и Г. Они одинаковы у всех животных и растений. Различна лишь их последовательность. Блок Ц из ДНК человека ничем не отличается от блока Ц улитки. Но последовательность строительных блоков у данного человека отличается не только от их последовательности у улитки. Она отличается также (хотя и в меньшей степени) от последовательности блоков у любого другого человека (за исключением особого случая – однояйцовых близнецов).

ДНК обитает в нашем теле. Она не сконцентрирована в какой-то одной части тела, но распределена между всеми клетками. Тело человека состоит в среднем из 1015 клеток, и, за известными исключениями, которыми мы можем пренебречь, каждая из этих клеток содержит полную копию ДНК, свойственной данному телу. Эту ДНК можно рассматривать как набор инструкций, записанных с помощью нуклеотидного алфавита – А, Т, Ц, Г – и указывающих, как должно строиться тело. Представим себе громадное здание, где в каждой комнате стоит шкаф, содержащий созданные архитектором чертежи, по которым это здание строилось. В клетке таким “шкафом” служит ядро. “Чертежи” для человеческого тела составляют 46 “томов”. У других видов число “томов” – хромосом – иное. Под микроскопом они имеют вид длинных нитей, в которых в определенном порядке расположены гены. Нелегко, да и, вероятно, даже бессмысленно, решать, где кончается один ген и начинается другой. К счастью, как мы вскоре увидим, здесь это не имеет значения.

Я воспользуюсь аналогией с чертежами, свободно чередуя метафоры со словами, обозначающими реально существующие объекты. “Том” будет фигурировать в моем тексте попеременно с хромосомой, а “лист” используется наравне с геном, хотя гены разделены менее четко, чем страницы книги. С этой метафорой мы пойдем достаточно далеко. Когда она наконец перестанет срабатывать, я введу другие метафоры. Между прочим, никакого “архитектора” не было. Содержащиеся в ДНК инструкции были собраны естественным отбором.

Молекулы ДНК выполняют две важные функции. Во-первых, они реплицируются, то есть создают копии самих себя. Такое самокопирование происходило непрерывно с тех пор как возникла жизнь, и надо сказать, что молекулы ДНК достигли в этом совершенства. Взрослый человек состоит из 1015 клеток, но в момент зачатия он представлял собой всего одну клетку, наделенную одной исходной копией “чертежей”. Эта клетка разделилась на две, причем каждая из возникших двух клеток получила собственную копию чертежей. В результате последовательных делений число клеток увеличивается до 4, 8, 16, 32 и так далее до миллиардов. При каждом делении содержащиеся в ДНК чертежи точно, практически без ошибок, копируются.

Говорить о дупликации ДНК – это полдела. Но если ДНК действительно представляют собой чертежи для построения организма, как эти планы реализуются? Как они переводятся в ткани организма? Это подводит меня ко второй важной функции ДНК. Она косвенно контролирует изготовление молекул другого вещества – белка. Гемоглобин, упоминавшийся в главе 2, – всего одна из огромного множества белковых молекул. Закодированная в ДНК информация, записанная с помощью четырехбуквенного нуклеотидного алфавита, переводится простым механическим способом на другой, аминокислотный, алфавит, которым записывается состав белковых молекул.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Сноски

1

Текст приводится в сокращении. Перевод выполнен кандидатом биологических наук Петром Петровым. – Прим. ред.

2

Некоторые люди, даже среди неверующих, были оскорблены этой цитатой из Симпсона. Я согласен, что при первом чтении она звучит грубовато и несколько безапелляционно, вроде высказывания Генри Форда: “История – это более или менее чепуха”. Но, не касаясь ответов, которые дает религия (мне они известны; не тратьте попусту почтовые марки), когда вам приходится задуматься над додарвиновскими ответами на такие вопросы, как “Что есть человек?”, “ ть хоть какие-нибудь высказывания, не потерявшие в наши дни всякий смысл, есл и не считать (значительного) исторического интереса? Ведь существуют же на свете совершенно неверные представления, и именно к их числу относятся все ответы, дававшиеся на эти вопросы до 1859 года.

3

Некоторые критики ошибочно считают, что “Эгоистичный ген” проповедует эгоизм как нравственный принцип, которого мы должны придерживаться в жизни! Другие (возможно, потому, что они прочитали только заглавие книги или не пошли дальше первых двух страниц) полагают, что, по моему мнению, эгоизм и другие скверные черты характера составляют неотъемлемую часть человеческой природы, нравится нам это или нет. В эту ошибку легко впасть, если вы считаете (как, по-видимому, полагают непостижимым образом многие другие люди), что генетическая “детерминированность” дана нам навсегда, что она абсолютна и необратима. На самом же деле гены “детерминируют” поведение лишь в статистическом смысле. Хорошей аналогией этому служит широко распространенное мнение, что красный закат обещает ясную погоду на следующий день. Возможно, что по статистике красный закат действительно предвещает великолепную погоду назавтра, но никто не станет заключать об этом пари на крупную сумму. Мы прекрасно знаем, что на погоду действует множество факторов – и притом очень сложными путями. Любое предсказание погоды подвержено ошибкам. Это всего лишь предсказание, опирающееся на статистику. Мы не считаем, что красные закаты бесспорно определяют хорошую погоду назавтра, и точно так же не должны считать гены окончательными детерминантами чего бы то ни было. Нет никаких причин, чтобы влияние генов нельзя было повернуть в противоположную сторону с помощью других воздействий. “Генетический детерминизм” и причины возникновения недоразумений всесторонне рассмотрены в главе 2 моей книги “Расширенный фенотип” и в статье “Социобиология: новая буря в стакане воды”. Меня даже обвиняли в том, будто я считаю, что все люди по своей сути – чикагские гангстеры! Однако главное в моей аналогии с чикагским гангстером заключалось, конечно, в том, что зная кое-что о среде, в которой преуспел данный человек, вы получите известное представление о самом человеке. Это не имеет никакого отношения к особым качествам чикагских гангстеров. Я мог бы с таким же успехом провести аналогию с человеком, возглавившим англиканскую церковь или избранным в “Атенеум”. В любом случае объектом моей аналогии были не люди, а гены.

Я обсуждал это, наряду с другими недоразумениями, вызванными чересчур буквальным восприятием, в статье “В защиту эгоистичных генов”, из которой и взята приведенная цитата.

Должен добавить, что, перечитывая свою книгу в 1989 году, я испытывал некоторую неловкость от встречающихся в этой главе политических отступлений. Фраза “Сколько раз в недалеком прошлом надо было повторять это [о необходимости обуздать свою эгоистичную жадность, чтобы избежать уничтожения всей группы] английскому рабочему классу” звучит так, как если бы я был тори! В 1975 году, когда она была написана, лейбористское правительство, за которое я голосовал, отчаянно боролось против 23-процентной инфляции и, естественно, было обеспокоено требованиями повышения заработной платы. Мое замечание могло быть взято из речи любого лейбористского министра того времени. Теперь же, когда Англией управляют “новые правые”, которые возвели низость и эгоизм в статус идеологии, мои слова приобрели скверный оттенок, о чем я сожалею. Я не отказываюсь от своих слов. Эгоистичная недальновидность не утратила нежелательных последствий, о которых я говорил. Однако сегодня в поисках примеров эгоистичной недальновидности в Англии следовало бы обращаться прежде всего к рабочему классу. В сущности, вероятно, лучше всего было бы не отягощать научный труд политическими отступлениями, поскольку они удивительно быстро устаревают. Книги склонных к политике ученых 30-х годов, например Джона Б. С. Холдейна и Ланселота Хогбена, сегодня в значительной степени проигрывают от содержащихся в них анахроничных колкостей.