To the smart operator, Malenfant liked to say, everything is a symbol.
Emma nudged him. It was time.
He stood up and climbed onto the stage. The audience buzz dropped, and the lights dimmed.
Once again, a turning point, he thought, another make or break crisis. If I succeed today, then the Big Dumb Booster flies. If I fail – then, hell, I find another way.
He was confident, in command. He began.
‘…We at Bootstrap believe it is possible that America can dominate space in the twenty-first century – making money doing it – just as we dominated commercial aviation in the twentieth century. In fact, as I will try to explain, I believe we have a duty to the nation, indeed the human species, at least to try.
‘But the first thing we have to do is to bring down Earth-to-orbit costs,’ he said. ‘And there are two ways to achieve that. One way is to build a new generation of reusable spacecraft.’
The first challenge came, a voice floating from the back of the room. We already have a reusable spacecraft. We’ve been flying it for thirty years.
Malenfant held his hands up. ‘Much as I admire NASA’s achievements, to call the Space Shuttle reusable is to stretch the word to yield point. After each Shuttle flight the Orbiter has to be stripped down, reassembled and re-certified from component level up. It would actually be cheaper to build a whole new Orbiter every time.’
So you’re proposing a new reusable craft? Lockheed have spent gigabucks and years developing –
‘I’m not aiming for reusability at all, if you’ll forgive me. Because the other approach to cutting launch costs is to use expendables that are so damn cheap that you don’t care if you throw them away. Hence, the Big Dumb Booster.’
Using the giant softscreen behind him he let them look at a software-graphic image of George Hench’s BDB on the pad. It looked something like the lower half of a Space Shuttle – two solid rocket boosters strapped to a fat, rust-brown external fuel tank – but there was no moth-shaped Shuttle Orbiter clinging to the tank. Instead the tank was topped by a blunt-nosed payload cover almost as fat and wide as the tank itself. And there were no NASA logos: just the Bootstrap insignia, and a boldly displayed Stars and Stripes.
There were some murmurs from his audience, one or two snickers. Somebody said, It looks more Soviet than anything American.
So it did, Malenfant realized, surprised. He made a note to discuss that with Hench, to take out the tractor-factory tinge. Symbolism was everything.
Malenfant pulled up more images, including cutaways giving some construction details. ‘The stack is over 300 feet tall. You have a boat-tail of four Space Shuttle main engines here, attached to the bottom of a modified Shuttle external tank, so the lower stage is powered by liquid oxygen and hydrogen. You’ll immediately see one benefit over the standard Shuttle design, which is in-line propulsion; we have a much more robust stack here. The upper stage is built on one Shuttle main engine. Our performance to low Earth orbit will be 135 tons – twice what the Shuttle can achieve.
‘But LEO performance is secondary. This is primarily an interplanetary launcher. We can throw fifty tons directly onto an interplanetary trajectory. That makes the avionics simple, incidentally. We don’t need to accommodate Earth orbit or re-entry or landing. Just point and shoot …’
It may be Big and Dumb but it’s scarcely cheap.
‘Oh, but it is. What you have here is a bird built from technology about as proven and basic as we can find. We only use Shuttle engines and other components at the end of their design lifetimes. And as I’ve assured you before I am investing not one thin dime in R&D. I’m interested in reaching an asteroid, not in reinventing the known art. We believe we could be ready for launch in six months.’
What about testing?
‘We will test by flying, and each time we fly we will take up a usable payload.’
That’s ridiculous. Not to say irresponsible.
‘Maybe. But NASA used that approach to accelerate the Saturn V development schedule. Back then they called it all-up testing. We’re walking in mighty footsteps.’
There was some laughter at that.
You have the necessary clearance for all this?
‘We’re working on it.’
More laughter, a little more sympathetic.
‘As for our own financial soundness in the short term, you have the business plans, downloaded in the softscreens in front of you. Capital equipment costs, operating costs, competitive return on equity and cost of debt, the capital structure including the debt to equity ratio, other performance data such as expected flight rate, tax rates and payback periods. Even the first flight is partially funded by scientists who have paid to put experiments aboard, from private corporations, the Japanese and European space agencies, even NASA.’
You must realize your whole cost analysis here is based on flawed assumptions. The only reason you can pick up Shuttle engines cheap is because the Shuttle program exists in the first place. So it’s a false saving.
‘Only somebody funded by federal money would call any saving “false”,’ said Malenfant. ‘But it doesn’t matter. This is a bootstrap project, remember. All we need is to achieve the first few flights. After that we’ll be using the resources we find out there to bootstrap ourselves further out. Not to mention make ourselves so rich we’ll be able to buy the damn Shuttle program.
‘I know this isn’t easy to assess for any investor who isn’t a technologist. Exercising due diligence, how would I check out such a business plan? Who else but by giving it to my brother-in-law at NASA? After all, NASA has the only rocket experts available. Right?
‘But NASA will give you the same answer every time. It won’t work. If it did, NASA would be doing it, and we aren’t. All I can ask of you is that you don’t just go to NASA. Seek out as many opinions as you can. And research the history of NASA’s use of bureaucratic and political machinery to stifle similar initiatives in the past.’
There was some stirring at that, even a couple of boos, but he let it stand.
‘Let me show you where I want to go.’ He pulled up a blurred radar image of an asteroid, a lumpy rock. ‘This piece of real estate is called Reinmuth. It is a near-Earth asteroid, discovered in 2005. It is what the astronomers call an M-type, solid nickel-iron with the composition of a natural stainless steel.
‘One cubic kilometre of it ought to contain seven billion tons of iron, a billion tons of nickel, and enough cobalt to last three thousand years, conservatively worth six trillion bucks. If we were to extract it all we would transform the national economy, in fact, the planet’s economy.’
How can you expect government to support an expansionist space colonization program?
‘I don’t. I just want government to get out of the way. Oh, maybe government could invest in some fast-track experimental work to lower the technical risk.’ Nodding heads at that. ‘And there may be kick-starts the government can provide – like the Kelly Act of 1925, when the government gave mail contracts to the new airlines. But that’s just seedcorn stuff. This program isn’t called Bootstrap for nothing.
‘We have a model from history. The British Empire worked to a profit. How? The British operated a system of charter companies to develop potential colonies. The companies themselves had to bear the costs of administration and infrastructure: running the local government, levying taxes, maintaining a police force, administering justice. Only when a territory proved itself profitable would the British government step in and raise the flag.
‘The French and Germans, by contrast, worked the other way around: government followed by exploitation and trade. By 1900 colonial occupation had cost the French government the equivalent of billions of dollars. We don’t want to make the same mistake.
‘We believe the treaties governing outer space resources are antiquated, inappropriate and probably unenforceable. We believe it is up to the US government to revoke those treaties and begin to offer development charters along the lines I’ve described. What we’re offering here is the colonization of the Solar System, and the appropriation of its resources as appropriate, on behalf of the United States – at virtually zero cost to the US taxpayer. And we all get rich as Croesus in the process.’
There was a smattering of applause at that.
He stepped forward to the front of the stage. Before him there was a sea of faces – mostly men, of course, most of them over fifty and therefore as conservative as hell. There were representatives of his corporate partners here – Aerojet and Honeywell and Deutsche Aerospace and Scaled Composites, Inc. and Martin Marietta and others – as well as representatives of the major investors he still needed to attract, and four or five NASA managers, even a couple of uniformed USASF officers. Movers and shakers, the makers of the future, and a few entrenched opponents.
He marshalled his words.
‘This isn’t a game we’re playing here. In a very real sense we have no choice.
‘I cut my teeth on the writings of the space colony visionaries of the ’60s and ’70s. O’Neill, for instance. Remember him? All those cities in space. Those guys argued, convincingly, that the limits to economic growth could be overcome by expansion into space. They made the assumption that the proposed space programs of the time would provide the capability to maintain the economic growth required by our civilization.
‘None of it happened.
‘Today, if we want to start to build a space infrastructure, we’ve lost maybe forty years, and a significant downgrade of our capability to achieve heavy lift into orbit. And the human population has kept right on growing. Not only that, there is a continuing growth in wealth per person. Even a pessimistic extrapolation says we need total growth of a factor of sixty over the rest of this century to keep up.
‘But right now we ain’t growing at all. We’re shrinking.
‘We lose twenty-five billion tons of topsoil a year. That’s equivalent to six 1930s dustbowls. Aquifers – such as those beneath our own grain belt – are becoming exhausted. Our genetically uniform modern crops aren’t proving too resistant to disease. And so on. We are facing problems which are spiralling out of control, exponentially.
‘Let me put this another way. Suppose you have a lily, doubling in size every day. In thirty days it will cover the pond. Right now it looks harmless. You might think you need to act when it covers half the pond. But when will that be? On the twenty-ninth day.
‘People, this is the twenty-ninth day.
‘Here’s the timetable I’m working to.
‘We need to be able to use power from space to respond to the global energy shortage by 2020. That’s just ten years from now.
‘By 2050 we need a working economy in space, returning power, microgravity industrial products and scarce resources to the Earth. We might even be feeding the world from space by then. We’ll surely need tens of thousands of people in space to achieve this, an infrastructure extending maybe as far as Jupiter. That’s just forty years away.
‘By 2100 we probably need to aim for economic equivalence between Earth and space. I can’t hazard what size of economy this implies. Some say we may need as many as a billion people out there. We can figure it out later.
‘These are targets, not prophecy. We may not achieve them; if we don’t try, we certainly won’t. My point is that we’ve sat around with our thumbs up our butts for too long. If we start now, we may just make it. If we leave it any longer, we may not have a planet to launch our spaceships from …
‘And,’ he said, ‘in the end, have faith.’
In who? You?
Malenfant smiled.
His speech was well rehearsed, and it almost convinced him. But Cornelius’s Carter stuff nagged away at the back of his head. Was all this stuff, the exploitation of the Solar System for profit, really to be his destiny? Or – something else, something he couldn’t yet glimpse?
He felt his pulse race at the prospect.
Behind him, the softscreen’s software-generated images gently morphed into a shot of a Big Dumb Booster, real hardware sitting on the pad, a pillar of heavy engineering wreathed in vapour under a burning blue sky, a spaceship ready for launch.
Damn if he couldn’t see some glistening eyes out there, shining in the transmitted desert light. ‘This is a live image,’ he said. ‘We’re ramping up for our first smoke test. People, this is just the beginning. I’m going places. Come aboard.’
He waited for the applause. It came.
Emma Stoney:
It only took a week before Dan had designed and set up his first message-from-the-future experiment, at a place called the National Radio Astronomy Observatory in West Virginia. Emma was relieved that the funding required was modest, comparatively anyhow, and Malenfant was able to pull strings to get his way without, as far as she could tell, any visible damage to the company.
Translation: nobody had found out yet what the hell they were doing.
Weeks went by and the experiment produced nothing useful. Malenfant shuttled between Vegas, the Mojave and West Virginia.
After a month of trying to convince Malenfant to come back to work, Emma cleared her diary and caught a flight to West Virginia.
She had a Bootstrap driver take her out to the radio observatory. She arrived at midnight.
The National Radio Astronomy Observatory proved to be set in a leafy valley surrounded by forest-clad hills. In the cloudless October sky a sliver of Moon floated among the stars.
As her eyes dark-adapted Emma made out a cluster of upturned dishes, each cluttered with spidery receiving equipment. The dishes seemed to glow, silver and white, as they peered up hopefully into an impenetrable, infinite sky. Occasionally one of the dishes would move on its fragile-looking stand, with a grind of heavy equipment, at the obscure command of one of the observers in the low, cheap-looking buildings. She wondered how many of the researchers here were now working for Bootstrap or for Eschatology – in either case, presumably, funded by Malenfant’s money.
She was taken to a grassy area where half a dozen folding lawn chairs had been set up. Malenfant, Dan Ystebo and Cornelius Taine were working their way through a couple of six-packs. All of them were bundled up against the chill.
Dan, crumpled and slightly drunk, looked as if he hadn’t changed his T-shirt since Florida. Cornelius wasn’t drinking. He was wearing his customary designer suit, neat and seamless; somehow he seemed sealed off from this environment, green hills and silence and stately nature.
Malenfant was pacing, restless, his footprints dark against the dew on the grass.
She sighed. Malenfant, in this obsessive mood, took some management. Well, she’d expected this to take some time.
She sat down gingerly on a spare chair, and accepted a beer. ‘I should have brought a heavier coat.’
Dan said sleepily, ‘After the first six-pack you don’t notice the cold.’
‘So what have you picked up from our silver-suited descendants?’
Cornelius shook his head. ‘We didn’t expect success so easily. We just had to eliminate the most obvious possibility.’
She glanced around. ‘These are radio telescopes. Right? You’re expecting to pick up back-to-the-future messages by radio waves?’
Dan said, ‘We’re trying to build a Feynman radio here, Emma.’
‘Feynman? As in Richard Feynman?’
Malenfant was smiling. ‘Turns out,’ he said, ‘there’s a loophole in the laws of physics.’
Cornelius held up his hands. ‘Look, suppose you jiggle an atom to produce a radio wave. We have equations which tell us how the wave travels. But the equations always have two solutions.’
‘Two?’
Dan scratched his belly and yawned. ‘Like taking a square root. Suppose you have a square lawn, nine square yards in area. How long is the side?’
‘Three yards,’ she said promptly. ‘Because three is root nine.’
‘Okay. But nine has another square root.’
‘Minus three,’ she said. ‘I know. But that doesn’t count. You can’t have a lawn with a side of minus three yards. It makes no physical sense.’
Dan nodded. ‘In the same way the electromagnetism equations always have two solutions. One, like the positive root, describes the waves we’re familiar with, travelling into the future, that arrive at a receiver after they left the transmitter. We call those retarded waves. But there’s also another solution, like the negative root –’
‘Describing waves arriving from the future, I suppose.’
‘Well, yes. What we call advanced waves.’
Cornelius said, ‘It’s perfectly good physics, Ms Stoney. Many physical laws are time-symmetric. Run them forward, and you see an atom emitting a photon. Run them backward, and you see the photon hitting the atom …’
‘Which is where Feynman comes in,’ Dan said. ‘Feynman supposed the outgoing radiation is absorbed by matter, gas clouds, out there in the universe. The gas is disturbed, and gives off advanced waves of its own. The energy of all those little sources travels back in time to the receiver. And you get interference. One wave cancelling another. All the secondary advanced waves cancel out the original advanced wave at the transmitter. And all their energy goes into the retarded wave.’
‘It’s kind of beautiful,’ Malenfant said. ‘You have to imagine all these ghostly wave echoes travelling backward and forward in time, perfectly synchronized, all working together to mimic an ordinary radio wave.’
Emma had an unwelcome image of atoms sparsely spread through some dark, dismal future, somehow emitting photons in a mysterious choreography, and those photons converging on Earth, gathering in strength, until they fell to the ground here and now, around her …
‘The problem is,’ Cornelius said gently, ‘Feynman’s argument, if you think about it, rests on assumptions about the distribution of matter in the future of the universe. You have to suppose that every photon leaving our transmitters will be absorbed by matter somewhere – maybe in billions of years from now. But what if that isn’t true? The universe isn’t some cloud of gas. It’s lumpy, and it’s expanding. And it seems to be getting more transparent.’
Dan said, ‘We thought it was possible that not all the advanced waves cancel out perfectly. Hence all this. We use the radio dishes here to send millisecond-pulse microwave radiation into space. Then we vary the rig: we send out pulses into a dead-end absorber. And we monitor the power output. Remember the advanced waves are supposed to contribute to the energy of the retarded wave, by Feynman’s theory. If the universe isn’t a perfect absorber –’
‘Then there would be a difference in the two cases,’ Emma said.
‘Yeah. We ought to see a variation, a millisecond wiggle, when we beam into space, because the echo effect isn’t perfect. And we hope to detect any message in those returning advanced echoes – if somebody downstream has figured out a way to modify them.
‘We pick cloudless nights, and we aim out of the plane of the Galaxy, so we miss everything we can see. We figure that only one per cent of the power will be absorbed by the atmosphere, and only three per cent by the Galaxy environment. The rest ought to make it – spreading out, ever more thinly – to intergalactic space.’
Cornelius said, ‘Of course we can be sure that whatever message we do receive will be meaningful to us.’ He looked around; his skin seemed to glow in the starlight. ‘I mean, to the four of us, personally. For they know we are sitting here, planning this.’
Emma shivered again. ‘And did you find anything?’
‘Not to a part in a billion,’ said Cornelius.
There was silence, save for a distant wind rustling ink-black trees.
Emma found she had been holding her breath. She let it out gently. Of course not, Emma. What did you expect?
‘Crying shame,’ said Dan Ystebo, and he reached for another beer. ‘Of course experiments like this have been run before. You can find them in the literature. Schmidt in 1980. Partridge, Newman a few years earlier. Always negative … Which is why,’ he said slowly, ‘we’re considering other options.’
Emma said, ‘What other options?’
Cornelius said, ‘We must use something else – something that isn’t absorbed so easily as photons. A long mean free path length. Neutrinos.’
‘The spinning ghosts.’ Dan belched, and took a pull at his beer. ‘Nothing absorbs neutrinos.’
Emma frowned, only vaguely aware what a neutrino was. ‘So how do you make a neutrino transmitter? Is it expensive?’
Cornelius laughed. ‘You could say that.’ He counted the ways on his hands. ‘You set off a new Big Bang. You spark a supernova explosion. You turn a massive nuclear power plant on and off. You create a high-energy collision in a particle accelerator …’
Malenfant nodded. ‘Emma, I was going to tell you. I need you to find me an accelerator.’
Enough, she thought.
Emma stood and drew Malenfant aside. ‘Malenfant, face it. You’re being spun a line by Cornelius here, who has nothing to show you, nothing but shithead arguments based on weird statistics and games with techno toys. He’s spinning some kind of schizoid web, and he’s drawing you into it. It has to stop here before –’
He snapped, ‘If something goes wrong in the cockpit you don’t give up. You try something else. And then another thing. Again and again until you find something that works. Have a little faith, Emma.’ Emma opened her mouth, but he had already turned back to Dan Ystebo. ‘Now tell me how we detect these damn neutrons.’
‘Neutrinos, Malenfant …’
Cornelius leaned over to Emma. ‘The Wheeler-Feynman stuff may seem spooky to you. It seems spooky to me: the idea of radio waves passing back and forth through time … But it’s actually fundamental to our reality.
‘Why is there a direction to time at all? Why does the future feel different from the past? Some of us believe it’s because the universe is not symmetrical. At one end there is the Big Bang, a point of infinite compression. And at the other there is the endless expansion, infinite dilution. They couldn’t be more different.
‘We can figure out the structure to the universe by making observations, expressing it in such terms. But what difference does it make to an electron? How does it “know” that the forward-in-time radio waves are the “correct” ones to emit?
‘Maybe it’s because of those back-in-time echoes. Perhaps an electron can tell where it is in time – and which way it’s facing. And that’s how come the forward-in-time waves are the ones that make sense.
‘All this is analogy and anthropomorphism. Of course electrons don’t “know” anything. I could say, more formally, that the Wheeler-Feynman theory provides a way for the boundary conditions of the universe to impose a selection effect on retarded waves. But that would just be blinding you with science; and we wouldn’t want that, would we?’ He was smiling, his teeth white. He was toying with her, she realized.
Malenfant and Ystebo talked on, slightly drunk, eager. It seemed to Emma that their voices rose up into the sky, small and meaningless, and far above the stars wheeled, unconcerned.
Bill Tybee:
Tuesday.
Well, June, I had my meeting with Principal Bradfield. She’s still determined she won’t take Tom back.