125. Rizzo C., Grasso G., Castaniti G., Ciccia F., Guggino G. Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation. Vaccines, 2020, Vol. 8, no.2, pp.1–23. doi:10.3390/vaccines8020272.
126. Rock K. L., Kono H. The Inflammatory Response to Cell Death. Annu. Rev. Pathol. Mech. Dis., 2008, Vol. 3, pp.99–126. doi:10.1146/annurev.pathmechdis.3.121806.151456.
127. Rogers G. L., Shirley J. L., Zolotukhin I., Kumar S.P, Sherman A., Perrin G.Q…..Herzog R. W.. Plasmacytoid and conventional dendritic cells cooperate in cross-priming AAV capsid-specific CD8+ T cells. Blood, 2017, Vol. 129, no.24 pp.3184–3195. doi: 10.1182/blood-2016–11–751040.
128. Romero V., Fert-Bober J., Nigrovic P. A., Darrah E., Haque U. J., Lee D. M., van Eyk J., Rosen A., Andrate F. Immune-mediated pore- forming pathways induce cellular hypercitrullination and generate citrullinated autoantigens in rheumatoid arthritis. Sci. Transl. Med., 2013, Vol. 5, 209ra150. doi: 10.1126/scitranslmed.3006869.
129. Rosen A., Casciola-Rosen L. Autoantigens as Partners in Initiation and Propagation of Autoimmune Rheumatic Diseases. Annu. Rev. Immunol., 2016, 34:15.1–15.26. doi: 10.1146/annurev-immunol-032414–112205.
130. Rossi D., Zlotnik A. The biology of chemokines and their receptors. Annu. Rev. Immunol., 2000, Vol. 18, pp.217–242. doi: 10.1146/annurev.immunol.18.1.217.
131. Rot A., Ulrich H. von Andrian. Chemokines in innate and adaptive host defense: Basic Chemokinese Grammar for Immune Cells. Annu. Rev. Immunol., 2004, Vol. 22, pp. 891–928. doi: 10.1146/annurev.immunol.22.012703.104543.
132. Salomonsson S., Larsson P., Tengner P., Mellquist E., Hjelmstrom P., Wahren-Herlenius M. Expression of the B Cell-Attracting Chemokine CXCL13 in the Target Organ and Autoantibody Production Ectopic Lymphoid Tissue in the Chronic Inflammatory Disease SjoÈgren's Syndrome. Scand. J. Immunol., 2002, Vol. 55, pp. 336–342. doi: 10.1046/j.1365–3083.2002.01058.x.
133. Sarelius I. Y., Glading A. J. Control of vascular permeability by adhesion molecules. Tissue Barriers. 2015, 3(1–2): e985954. doi: 10.4161/21688370.2014.985954.
134. Sato N., Beitz J. G., Kato J., Yamamoto M., Clark J. W., Calabresi P., Frackelton A. R. Jr. Platelet- derived growth factor indirectly stimulates angiogenesis in vitro. Am. J. Pathol., 1993, Vol. 142, no.4, pp. 1119–1130.
135. Scally S. W., Petersen J., Law S. C., Dudek N. L., Nel H. J., Loh K.L….Rossjohn J. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J. Exp. Med., 2013, Vol. 210, no.12, pp.2569–2582. doi: 10.1084/jem.20131241.
136. Scheel T., Gursche A., Zacher J., Haupl T… Berek C. V-region gene analysis of locally defined synovial B and plasma cells reveals selected B cell expansion and accumulation of plasma cell clones in rheumatoid arthritis. Arthr. Rheumat., 2011, Vol. 63, no. 1, pp. 63–72. doi: 10.1002/art.27767.
137. Schellekens G. A., de Jong B. A., van den Hoogen F. H., van de Putte L. B., van Venrooij W. J. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J. Clin. Investig., 1998, Vol. 101, no.1, pp. 273–281. doi: 10.1172/JCI1316.
138. Schonbeck U., Brandt E., Petersen F., Flad H. D., Loppnow H., IL-8 specifically binds to endothelial but not to smooth muscle cells. J. Immunol., 1995, Vol. 154, no 5, pp. 2375–2383.
139. Segura E., Amigorena S. Cross-presentation by human dendritic cell subsets. Immunol.Lett., 2014, Vol. 158(1–2), pp.73–78. doi: 10.1016/j.imlet.2013.12.001.
140. Sharma D., Kanneganti T. D. The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J. Cell Biol., 2016, Vol. 213, no. 6, pp.617–629. https://doi.org/10.1083/jcb.201602089.
141. Shikama Y., Kobayashi K., Kasahara K., Kara S. Granuloma formation by artificial microparticles in vitro. Macrophages and monokines play a critical role in granuloma formation. Am. J. Pathol., 1989, Vol. 134, no. 6, pp.1189–1199.
142. Silver J., Goyert S. M. Epitopes are the functional units of Ia molecules and form the molecular basis for disease susceptibility, human class II histocompatibility antigens. In: Ferrone S, Solheim BG, Moller E, editors. HLA class II antigens: a comprehensive review of structure and function. Berlin, Springer. 1985, p 32–48.
143. Skotnicki J. S., Zask A., Nelson F. C., Albright J. D., Levin J. I. Design and synthetic considerations of matrix metalloproteinase inhibitors. Ann. NY Acad. Sci., 1999, 30: 878, pp. 61–72. doi: 10.1111/j.1749–6632.1999.tb07674.x.
144. Sneller М. С. Granuloma formation, implications for the pathogenesis of vasculitis. Cleveland Clinic Journal of Medicine, 2002, Vol. 69, Supplement 2, pp. SII40–SII43. doi: 10.3949/ccjm.69.suppl_2.sii40.
145. Sottile J. Regulation of angiogenesis by extracellular matrix. Biochim. Biophys. Acta, 2004, Vol. 1654, pp. 13–22.
146. Spolski R, Leonard W. J. Interleukin-21: basic biology and implications for cancer and autoimmunity. Ann. Rev. Immunol., 2008, Vol. 26, pp.57–79. doi: 10.1146/annurev.immunol.26.021607.090316.
147. Steed A. L., Stappenbeck T. S. Role of viruses and bacteria-virus interactions in autoimmunity. Curr. Opin. Immunol., 2014, Vol. 31, pp.102–107. doi: 10.1016/j.coi.2014.10.006.
148. Stone R. C., Feng D., Deng J., Singh S., Yang L., Fitzgerald-Bocarsly P., Eloranta. M., Ronnblom L., Barnes B. J. Interferon regulatory factor 5 activation in monocytes of systemic lupus erythematosus patients is triggered by circulating autoantigens independent of type I interferons. Arthritis Rheum., 2012, Vol. 64, no.3, pp.788–798. doi: 10.1002/art.33395.
149. Stott D. I., Hiepe F., Hummel M., Steinhauser G., Berek C. Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with SjoÈ gren's syndrome. J. Clin. Invest., 1998, Vol.102, pp.938–946. doi: 10.1172/JCI3234.
150. Strieter R. M., Polverini P. J., Kunkel S. L., Arenberg D. A., Burdick M. D., Kasper J….Shanafelt A. B.. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem., 1995, Vol. 270, no. 45, pp.27348–27357. doi: 10.1074/jbc.270.45.27348.
151. Suzuki, F., Kubota T., Miyazaki Y., Ishikawa K., Ebisawa M., Hirohata S……Nanki T. Serum level of soluble CX3CL1/ fractalkine is elevated in patients with polymyositis and dermatomyositis, which is correlated with disease activity. Arthritis Res. Ther., 2012, Vol. 14, no.2, R48. doi: 10.1186/ar3761.
152. Swiecki M., Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol., 2015, Vol. 15, no 8, pp. 471–485. doi: 10.1038/nri3865.
153. Szekanecz Z., Halloran M. M., Haskell C. J. Mediators of angiogenesis: the role of cellular adhesion molecules. Trends Glycosci. Glycotechnol, (TIGG). 1999, 58: 73.
154. Szekanecz Z., Koch A. E. Macrophages and their products in rheumatoid arthritis. Curr. Opin. Rheumatol., 2007,Vol. 19, no.3, pp. 289–295.doi: 10.1097/BOR.0b013e32805e87ae.
155. Szekanecz Z., Koch A. E., Angiogenesis in rheumatoid arthritis. In: Rubanyi G. M., ed. Angiogenesis in health and disease. Marcel Dekker, New York, Basel. 2000; pp 429–450.
156. Szekanecz Z., Koch A. E., Chemokines and angiogenesis. Curr. Opin. Rheumatol., 2001, Vol. 13, no.3, pp. 202–208. doi: 10.1097/00002281–200105000–00009.
157. Szekanecz Z., Szegedi G., Koch A. E. Angiogenesis in rheumatoid arthritis. J. Invest. Med., 1998, Vol. 46, no. 2, pp.27–41.
158. Taniguchi N., Kawahara K., Yone K., Hashiguchi T., Yamakuchi M., Goto M….Maruyama I. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum., 2003, Vol. 48, no. 4, pp. 971–981. doi: 10.1002/art.10859.
159. Tengner P., Halse A-K., Haga H-J., Jonsson R., Wahren- Herlenius M. Detection of anti-Ro/SSA and anti-La/SSB auto-antibody-producing cells in salivary glands from patients with SjoÈgren's syndrome. Arthritis Rheum., 1998, Vol. 41, no. 12, pp.2238–2248. doi: 10.1002/1529–0131(199812)41:12<2238::AID-ART20>3.0.CO;2-V.
160. Thurlings R. M., Wijbrandts C. A., Mebius R. E., Cantaert T., Dinant H. J., Teneke C. T., der Pouw-Kraan M., Verweij C. L., Baeten D., Tak P. P. Synovial Lymphoid Neogenesis Does Not Define a Specific Clinical Rheumatoid Arthritis Phenotype. ARTHRITIS & RHEUMATISM, 2008, Vol. 58, no. 6, pp. 1582–1589. doi: 10.1002/art.23505.
161. Turunen S., Huhtakangas J., Nousiainen T.. Valkealahti M., Melkko J., Risteli J., Lehenkari P. Rheumatoid arthritis antigens homocitrulline and citrulline are generated by local myeloperoxidase and peptidyl arginine deiminases 2, 3 and 4 in rheumatoid nodule and synovial tissue. Arthritis Research & Therapy, 2016, 18:239. doi 10.1186/s13075–016–1140–9.
162. Ulfgren A. K., Grundtman C., Borg K., Alexanderson H., Andersson U., Harris H. E. Lundberg I. E. Down-regulation of the aberrant expression of the inflammation mediator high mobility group box chromosomal protein 1 in muscle tissue of patients with polymyositis and dermatomyositis treated with corticosteroids. Arthritis Rheum., 2004, Vol. 50, no. 5., pp.1586–1594. doi: 10.1002/art.20220.
163. Van der Aa E., van Montfoort N., Woltman A. M. BDCA3+CLEC9A+human dendritic cell function and development. Semin. Cell Dev. Biol., 2015, 41:39–48. doi: 10.1016/j.semcdb.2014.05.016.
164. van der Woude D., Lie B. A., Lundstrom E., Balsa A., Feitsma A. L., Houwing-Duistermaat J.J….. Toes R. E. Protection against anti- citrullinated protein antibody-positive rheumatoid arthritis is predominantly associated with HLA- DRB1*1301: a meta-analysis of HLA-DRB1 associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in four European populations. Arthritis Rheumatol., 2010, Vol. 62, no.5, pp.1236–1245. doi: 10.1002/art.27366.
165. Veale D. J., Fearon U. Inhibition of angiogenic pathways in rheumatoid arthritis: potential for therapeutic targeting. Best Pract. Res. Clin. Rheumatol., 2006, Vol.20, no.5, pp. 941–947. doi: 10.1016/j.berh.2006.05.004.
166. Vogel D. Y., Glim J. E., Stavenuiter A. W., Breur M., Heijnen P., Amor S., Dijkstra C. D., Beelen R. H. Human macrophage polarization in vitro: maturation and activation methods compared. Immunobiology, 2014, Vol. 219, no. 9, pp. 695–703. doi: 10.1016/j.imbio.2014.05.002.
167. Voll R. E., Urbonaviciute V., Herrmann M., Kalden J. R. High mobility group box 1 in the pathogenesis of inflammatory and autoimmune diseases. Isr. Med. Assoc. J., 2008, no.10, pp. 26–28.
168. Williams. G. T., Williams W. J. Granulomatous inflammation – a review. J. Clin. Pathol… 1983, Vol. 3, no. 7, pp. 723–733. doi: 10.1136/jcp.36.7.723.
169. Wu L., Fan J., Matsumoto S., Watanabe T. Induction and regulation of matrix metalloproteinase-12 by cytokines and CD40 signaling in monocyte/macrophages. Biochemical and Biophysical Research Communications, 2000, Vol. 269, no.3, pp. 808–815. doi.org/10.1006/bbrc.2000.2368.
170. Wynn T. A., Vannella K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016; Vol. 44, no. 3, 450–462. doi: 10.1016/j.immuni.2016.02.015.
171. Yamanaka H. TNF as a target of inflammation in rheumatoid arthritis. Endocr. Metab. Immune, 2015, Vol. 15, pp. 129–134. doi: 10.2174/1871530315666150316121808.
172. Yang B. G., Tanaka T., Jang M. H., Bai Z., Hayasaka H., Miyasaka M. Binding of lymphoid chemokines to collagen IV that accumulates in the basal lamina of high endothelial venules: its implications in lymphocyte trafficking. J Immunol., 2007, Vol.179, no. 7, pp. 4376–4382. doi: 10.4049/jimmunol.179.7.4376.
173. Young C. L., Adamson T. C., Vaughan J. H., Fox R. I. Immunohistologic characterization of synovial membrane lymphocytes in rheumatoid arthritis. Arthritis Rheum., 1984, Vol. 27, no. 1, pp. 32–39. https://sci-hub.do/10.1002/art.1780270106.
174. Zhu H., Fang X., Zhang D., Wu W., Shao M., Wang L., Gu L. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen. Apoptosis, 2016, Vol. 21, no. 1, pp. 96–109. doi: 10.1007/s10495–015–1187–0.
Глава 2. Аутофагия, апоптоз, некроптоз, пироптоз и нетоз в патогенезе иммуновоспалительных ревматических заболеваний
Иммуновоспалительные ревматические заболевания (ИВРЗ) представляют собой уникальную группу болезней человека, патогенетической основой которых является системный иммуновоспалительный процесс в рыхлой волокнистой неоформленной соединительной ткани. Важным свойством ИВРЗ является гиперреактивность иммунной системы, моногенная и/или полигенная генетическая предрасположенность, многофакторность происхождения, при этом на модуляцию фенотипа заболевания сильное влияние оказывают факторы окружающей среды [94].
При интерпретации патогенеза ИВРЗ доминирующими являются представления о нарушениях регуляции врожденной иммунной системы, обуславливающих индукцию системных аутовоспалительных процессов и о нарушениях функций адаптивной иммунной системы, ассоциированных с появлением системных аутоиммунных заболеваний [2, 16].
Триггерами активации врожденной и адаптивной систем иммунитета при ИВРЗ являются молекулярные паттерны, ассоциированные с дезорганизацией рыхлой волокнистой неоформленной соединительной ткани – DAMP, называемые также “сигналами опасности” или аларминами. При системных аутовоспалительных процессах DAMP взаимодействуют с мембранными и цитоплазматическими рецепторами распознавания образов – PRR-рецепторами, экспрессирующихся на антиген-презентирующих клетках (АПК) – фолликулярных и плазмацитоидных дендритных клетках (фДК и пДК) с последующей активацией сигнальных путей, приводящих к гиперпродукции, в частности, IL-1β. IL-1β является одной из основных эффекторных молекул, стимулирующих аутовоспалительные процессы. Этот цитокин также действует и на эффекторные клетки адаптивной иммунной системы, способствуя экспансии аутореактивных Th1- и Th17-лимфоцитов и ингибируя активность регуляторных Т-лимфоцитов (Treg). IL-1β в этой ситуации выступает в качестве важного фактора патогенетической взаимосвязи между адаптивным и врожденным иммунитетом. Аналогичные функции выполняют и интерфероновые цитокины. Также врожденная иммунная система играет определенную роль в активации адаптивной иммунной системы с помощью АПК, активация которых обуславливает последующий реактивный ответ В – и Т-клеток. Таким образом краткосрочная или длительная активация врожденного иммунитета может привести к аутоиммунным заболеваниям [112].
Ключевой характеристикой системных аутоиммунных процессов является обнаруживаемая аутореактивность В- и Т-клеток, проявляющаяся в виде продукции цитопатогенных аутоантител и аутореактивных Т-клеток широкой специфичности, тканевой и органной тропности. Во всех этих случаях DAMP выступают в роли ауто-АГ.
Хотя существуют обоснованные различия между аутовоспалительными и аутоиммунными заболеваниями, тем не менее, они имеют много общего. В обеих группах заболеваний лежащие в их основе иммунопатологические процессы направлены против АГ собственного организма. Эти заболевания носят системный характер, при этом поражается опорно-двигательный аппарат и паренхиматозные органы. Этиологические и патогенетические характеристики позволяют отнести их к группе мультифакториальных заболеваний [121].
В этом контексте модель континуума ИВРЗ подразумевает тесную взаимосвязь хронического продуктивного воспаления (ХПВ), гиперреактивности иммунной системы, причинно-следственных взаимосвязей механизмов врождённого и адаптивного иммунитета и полиорганности поражения. Важнейшей и универсальной характеристикой ХПВ при аутовоспалительных и аутоиммунных заболеваниях, является формирование клеточного воспалительного инфильтрата (КВИ).
В главе 1 были представлены материалы, свидетельствующие о том, что плацдармом ИВРЗ является рыхлая волокнистая неоформленная соединительная ткань. Уникальность её реактивности состоит в том, что воздействие различных флогогенов сопровождается однотипной реакцией этой ткани, в каких бы органах она не располагалась. Морфологическим субстратом ХПВ при ИВРЗ является КВИ. В процессе хронического воспаления КВИ приобретает разные морфологически идентифицируемые формы. Организованными формами КВИ при ИВРЗ являются эктопические фолликулоподобные лимфоидные структуры (ELS) и ГЗТ-гранулемы, неорганизованными формами – диффузный клеточный воспалительный инфильтрат. Фолликулоподобные структуры и ГЗТ-гранулемы имеют морфо-функциональное сходство с периферическими органами иммунной системы – лимфатическими узлами, пейеровыми бляшками, селезенкой, что создает возможность индукции иммунного ответа на ауто-АГ в очаге воспаления (locus morbi). КВИ является динамичной структурой, отражающей этапность, рецидивирующее течение и исход ИВРЗ. Динамика состава КВИ является отражением конкретного этапа иммуновоспалительного процесса [4].
Неотъемлемым компонентом патофизиологической динамики ELS, ГЗТ-гранулем и диффузного клеточного воспалительного инфильтрата при ИВРЗ является та или иная форма гибели клеток. Причём гибель клеток при ХПВ не является простым исчезновением последних, но является важным фактором поддержания и прогрессирования воспаления. Содержание этого уникального феномена состоит в том, что потеря целостности клеточной мембраны и высвобождение внутриклеточного содержимого обуславливают организацию цитопатогенного аутовоспаления и аутоиммунного ответа на DAMP, имеющих все характеристики ауто-АГ.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги