Основное свойство звука (гравитационного тока), распространяющегося в какой-либо среде вещества – это перенос энергии177 звуковой волны в форме гравитационного заряда через посредство механического состояния атомов – это последовательный процесс, определяющий скорость распространения звука в данной среде. Вначале зарождается гравитационный монополь178 при сбросе энергии кластером вещества. Затем этот монополь разряжается подобно магнитному с образованием волновода из опорных гравпотенциалов. После чего по этому волноводу устремляются микрочастицы с массой, создавая вихревые токи, которые и заряжают новый гравитационный монополь, но с противоположным зарядом и на новом месте. Заметим, что в ЭМВ перенос энергии происходит за счёт самодвижения переменного магнитного заряда не имеющего массы с опорой на электропотенциалы.
Как происходит этот перенос или как происходит самодвижение звука, т. е. гравитационного тока в среде?
Здесь уже уместно заметить, что источника самодвижения, порождающего структуры механического кванта179 звуковых волн, как и механизма его самодвижения в САП, автором в открытой литературе данных не обнаружено, как это положение существует и со структурой электромагнитного фотона. Другими словами, на микроскопическом уровне физический механизм распространения звука неизвестен. Законы распространения звуковых волн определены лишь на основе экспериментальных данных и носят, исключительно математически феноменологический характер.
Источниками квантов звука могут быть, как и при рождении фотонов, быстрое изменение энергетического состояния атомов, в данном случае, механического состояния коллектива атомов, образующих связанную систему масс. Механизм распространения звука в среде – зарядка потока гравитационных монополей с последующей их разрядкой и периодическим повторением этого процесса, образующим гравитационный ток в ней. Из анализа воздействия ИК-излучения на атомы, исследований механизма электрогидравлического разряда Л. А. Юткина, механического удара по твёрдому телу, детонации и последующего взрыва или какого-либо иного локального возмущения, следует, что всегда вынужденное изменение состояния поступательно-вращательного движения кластера вещества даже на пределе длины свободного пробега атомов при колебательно-вращательном движении их около положения равновесия в веществе индуктирует 4π-поток гравитационных монополей вокруг точки детонации. Это аналог индукции магнитного монополя в изменяющемся электрическом поле, т. е. в механически возмущённом пространстве-поле покоящейся атомно-молекулярной среды. Такое пространство-среда должно состоять из подвижных микрочастиц с массой – атомы, молекулы, ионы, электроны и т. д. Например, при механическом ударе по кластеру твёрдого тела, т. е. в связанной системе масс, в его пространстве приходят в движение атомы, сохраняя своё инертное состояние покоя. Это движение сложное и состоит из механических колебательно-вращательных движений атомов около положения равновесия и их вынуждено-возмущённого детонирования путём удара поступательного движения из состояния инертного покоя. Такое синфазное дебройлевское движение коллектива атомов приводит к зарядке микросфер-источников из спиралей гравпотенциалов (гравитационных монополей), т. е. носителей квантов индуктированной энергии – кластеров вихревых полей. Сливаясь в один, они уже образуют квантово разрешённый суммарный гравитационный заряд со структурой (фото 2.1) подобной структуре магнитного монополя. Далее следует разрядка этого монополя в пространстве кластера с производством волноводов-поля из опорных гравпотенциалов – с этого момента начинается жизнь механического микровихрона или идёт гравитационный ток (гравитационные волны). После чего, вдоль них синфазно возникают вихревые токи атомов, которые квантовано переносят соответствующую энергию материи на позволенной длине свободного пробега в различной форме (давление, плотность, температуру, магнитное состояние и т. д.) и они же регенерируют-заряжают новый коллектив, но противоположных по знаку гравмонополей впереди на 1/4 длины волны и на новом месте. При этом скорость распространения звука уже определяется продольной составляющей винтового движения атомов вдоль потенциалов волновода и соизмерима с их тепловой скоростью. Синфазное движение атомов приводит к созданию фронта звуковой волны. Это и есть ответ на вопрос – зачем нужна среда для распространения звука и чем обусловлена скорость звука в ней? При распространении звука в среде индуктированные гравмонополи меняются по знаку последующими вихревыми токами микрочастиц вдоль потенциалов волноводов – этим обеспечивается полное квантовое преобразование индуктированной в гравмонополе энергии при сохранении средней, этим отличается механизм формирования скорости звука от скорости света фотонов, этим отличается свободный механический микровихрон от электромагнитного.
Локальные термические колебания атомов кристалла вызывают распространение в веществе системы звуковых волн, квантами которых являются фононы. Фононы и их взаимодействия с электронами играют фундаментальную роль в современных представлениях по физике сверхпроводников, процессах теплопроводности, процессах рассеяния в твердых телах. Законы распространения волн – дифракция, интерференция, отражение, преломление одинаковы и для электромагнитных волн и для звука. Однако есть отличия в опорных потенциалах на волноводах и скоростях распространения звука и света. Электромагнитные вихроны устанавливают электрические потенциалы, которые вызывают вихревые электрические токи в проводниках, а механические – гравитационные потенциалы, которые вызывают вихревые гравитационные токи микрочастиц с массой и формируют тем самым фронты давления и скорости их движения, а также, в некоторых случаях, – вихревые токи ионов и электронов. Поэтому при распространении звуковой волны происходит следующее: – на расстоянии в полволны амплитудное значение давления из положительного становится отрицательным, т. е. разница давлений в двух точках, отстоящих друг от друга на полволны пути распространения волны, превышает в два раза.
– давление, оказываемое на частицы среды при распространении волны, является результатом действия вихревых токов вдоль потенциалов волновода.
– пробег частиц180 среды, участвующих в вихревых токах при передаче энергии волны и электрического заряда, не превышает длины их свободного пробега в среде при данных условиях.
На основании этого можно сделать заключение о том, что при переносе энергии звука происходит полное квантовое преобразование энергии вихревой материи микрочастиц с массой в этих волновых процессах, т. е. данный механический микровихрон является свободным со спином равным единице, по аналогии движения и переноса энергии фотоном.
Акустическая кавитация (обратный процесс). Этот процесс возникает при прохождении в воде звуковой волны большой интенсивности. В настоящее время акустическая кавитация, которая чаще называется ультразвуковой кавитацией, широко используется в научных и практических целях для ускорения различных технологических процессов. Однако этот тип кавитации недостаточен для инициирования ядерных реакций. Согласно фундаментальной работы по ультразвуковой деструкции материи А. Ф. Кладова для инициирования ядерных реакций необходимо в 10 раз повысить интенсивность излучения звука, по сравнению с обычной ультразвуковой аппаратурой. Кроме того, необходимо заменить современные представления о механизме кавитационного воздействия на объект, которые не позволяют объяснить экспериментальные результаты (Кладов А. Ф.), полученные при использовании ультразвука сверхвысокой интенсивности. В таких условиях первичный газовый пузырек размерами в несколько микрон, возбуждаемый акустическими колебаниями в сферическом стеклянном сосуде и имеющий вначале не совсем правильную сферическую форму, испускает световые импульсы столь интенсивные, что они видны невооруженным глазом. Длительность такого импульса является рекордно короткой и составляет от 10—50 пс до 100—300 пс, и зависит от концентрации растворенного газа и амплитуды звукового давления, спектр излучения сплошной, без выраженных характеристических линий и полос, размер светящейся области исчезающее мал и составляет менее 1 микрона. Причем вспышки происходят в основном при переходе от пузырька большего диаметра в жидкости к наименьшему диаметру. Кавитационный пузырёк, рождающийся и схлопывающийся миллионы раз в секунду, генерирует лишь усреднённый сонолюминесцентный свет. Яркость сонолюминесцентного света резко увеличивается при охлаждении воды. На последней стадии сжатия кавитационного пузырька его стенки развивают скорость до 1—1,5 км/с, что соизмеримо со скоростью звука в данной жидкости.
Механизм кавитации и сонолюминесценции – это квантовые переходы носителей индуктированной энергии от гравитационных к магнитным зарядам в образовавшихся замкнутых макровихронах квазичастиц – сфера пузырька. Это ещё один пример наряду с генерацией ИК-излучения нагретыми телами – явление сонолюминесценции, т. е. свечение жидкости под действием колебаний в пузырьке, в которой происходит передача энергии из акустической волны в электромагнитные фотоны, т. е. непрерывность тока энергии независимо от формы её прерывания – электрическим зарядом в веществе для фотона или механическим гравитационным зарядом в узле стоячей звуковой волны. Механизм образования такого пульсирующего пузырька заключается в следующем. При прохождении резонансного звукового кванта через воду гравитационный заряд механического вихрона производит волновод из гравпотенциалов, который при встрече с аналогичным встречным волноводом отражённой от стенки другого аналогичного кванта звука рождает кавитационный пузырёк, который следует рассматривать, как макрочастицу типа связанной пары электрон-позитрон. Эта пара вихронов начинает пульсировать изменяя геометрические и физические параметры плёнки пузырька. Процесс аналогичен рождению пары в поле атомного ядра – рождение замкнутых электромагнитных микро-вихронов в режиме противодавления, т.е. электрический монополь вихрона- электрическое поле атома. В кавитационном пузырьке противодавление – это давление двух встречных узлов волноводов. Гравитационный монополь замкнутого механического вихрона вынужденно при указанных условиях (обратный процесс) совершает квантовый переход и при разрядке рождает магнитный заряд. Здесь роль электрического монополя электромагнитного микровихрона и поля атомного ядра берут на себя локальные звуковое давление (плотность) и встречающееся на его пути локальное встречное противодавление. В одном случае это гребной винт, в другом – стоячая звуковая волна. В образовавшемся кавитационном пузырьке при разрядке гравитационного монополя вдоль его волноводов начинают пульсировать вихревые токи, которые перегревают плёнку слоя жидкости и образуют пузырёк, поверхность раздела между жидкостью и газом – индикатор закипания жидкости. Этот же процесс заряжает и магнитный монополь – диаметр пузырька уменьшается и становится совсем невидимым в момент, когда магнитный заряд достигает максимальной величины. А перед тем как совершить квантовый переход в гравитационный заряд, магнитный успевает при установке на волноводе в жидкости самых больших по значению электропотенциалов возбудить и ионизировать атомы, по которым затем идут вихревые электрические и гравитационные токи, порождающие кавитационную эрозию в твёрдом металле. Переходя в основное состояние атомы излучают световые фотоны. Итак, вихревые токи вдоль гравпотенциалов нагревают и образуют пузырёк локального перегрева, а вихревые токи вдоль электропотенциалов уменьшают его в диаметре и излучают свет – процесс пульсаций периодический с ресурсом от 106 до 1012 циклов, зависимый от значения величины гравитационного или магнитного заряда. По существу – это процесс рождения замкнутым механическим вихроном корпускулярной квазичастицы с ограниченным возрастом, подобный структуре шаровой молнии или паре электрон-позитрон.
Взаимодействие света со звуком (и наоборот) используется в современной оптике, оптоэлектронике, лазерной технике для управления когерентным световым излучением. Акустооптические устройства позволяют управлять амплитудой, частотой, поляризацией, спектральным составом светового сигнала и направлением распространения светового луча. Из прикладных аспектов акустооптических эффектов практическое применение имеют системы обработки информации, где акустооптические устройства используются для обработки СВЧ-сигналов в реальном масштабе времени.
Фононы и ротоны – элементарные высокочастотные проявления механических вихронов. Физический смысл появления ротонов соответствует появлению вихревого движения микрокластера в сверхпроводящей жидкости. Энергетический спектр элементарных возбуждений в жидком гелии имеет линейную зависимость в начальной части. Локальный минимум энергии соответствует тем-пературе около 8,6 К. Элементарные возбуждения линейной части спектра соответствуют рождению фононов, а возбуждения в области, близкой к минимуму – рождению ротонов181. Они тесно связаны взаимными квантовыми энергетическими переходами с электромагнитными фотонами и электронами среды. Фононы взаимодействуют не только друг с другом, но и с другими квазичастицами, как с электронами проводимости в металлах и полупроводниках, так и с магнонами в магнито-упорядоченных средах. Испускание и поглощение фононов электронами – основной механизм электрического сопротивления металлов и полупроводников.
Таким образом, механические (тепловые и звуковые) микровихроны – это продукты направленного поступательно-вращательного движения атомов и молекул, формирующих гравитационные токи в среде. Установленное свойство выводит закон Луи де Бройля на качественно новый механический уровень – в указанном состоянии конусно-винтовой кластер движущихся микрочастиц способен заряжать гравитационный монополь (источник), который при разрядке создаёт волновод (поле) из гравпотенциалов. По этому волноводу в следующее мгновение начинается винтовое движение кванта близлежащих атомов – вихревой гравитационный ток, который в свою очередь опять заряжает гравитационный заряд, но с противоположным знаком. Так рождается тепловая или звуковая волна, т. е. свободные механические дебройлевские волны.
2.3. Электрон – позитрон
Скажи мне, что такое электрон, и я объясню тебе всё остальное. William Thomson
Электрон, как замкнутое, а поэтому инертное и стабильное микропространство с массой, обладает структурой, внутренними и внешними физическими свойствами. Его комптоновская длина182 волны составляет величину 2,4 х 10—10 см. Дебройлевская183длина волны электрона в атоме (т. е. размер сферической области, в которой электрон, будучи связан электрическим полем ядра, уже перестаёт существовать со свойствами свободного электрона) в нормальных условиях рекомбинационного теплового равновесия составляет величину 10—7 – 10—8 см а в условиях вакуума космоса в областях с температурой близкой к абсолютному нулю приближается к 10—3 – 10—4 см. Таким образом, высоко возбуждённые состояния атомов, имеющие на поверхности Земли очень короткое время жизни, в глубинах космоса практически стабильны.
У электрона в системе СИ самая минимально возможная масса-энергия инертного покоя (511 Кэв) обусловлена ограничением свободного движения носителя индуктированной энергии ГЭММ в рамках его замкнутой структуры волноводов (фото 2.15). В результате этого свободный кластер гравитационных зёрен-потенциалов из обновлённого волновода электрона, взаимодействуя с полем тяготения Земли с образованием холодной плазмы, проявляет силовые линии притяжение. Электрон становится непрерывно связанным с полем тяготения, т.е. инертен.
Источником пульсаций излучения внешнего поля с частотой около 1020 Гц четверть-волноводов электронов является гравиэлектромагнитный монополь (ГЭММ) с размером сферы 10—20 см. Эффективный размер фазового объёма четверть-волноводов свободного электрона в состоянии покоя составляет величину 1,2 х 10—10 см, а его волновод существенно превосходит размеры атомного ядра. Его стабильное по возрасту жизни микропространство имеет полуцелый спин и отрицательный в системе СИ (позитрон – положительный) заряд 1,6 х 10—19 Кл, а также собственный магнитный момент, равный магнетону Бора.
Электроны рождаются в природе, с одной стороны, при образовании заряженных атомных ядер химических элементов, путём распада нейтральных ядер типа нейтрона, в процессах бета-распада ядер атомов химических элементов, при распаде нейтрона и других нестабильных элементарных частиц. А с другой стороны, при взаимодействии фотонов с атомно-молекулярным веществом в различных агрегатных состояниях – фотоэффект и пар – образование.
Свойства структуры электрона, кроме названных явлений, могут также дополнить распады короткоживущих элементарных частиц, таких как мюон, а также весьма загадочные явления бета-распада кобальта-60, нейтрона и некоторых других частиц. В этих превращениях ориентированные по спину внешним магнитным полем распадающиеся ядра излучают в одну сторону больше электронов, чем в другую. Это же явление наблюдается и у античастиц. Эксперименты, выполненные в этом направлении с 1956 по 1964 мировым научным сообществом, показали о наличии у электронов, позитронов и других микрочастиц сложной лево и право вращательной структуры.
Дополнительная информация по структуре электрона может быть получена из ответа на вопрос о его электрическом заряде и массе покоя. Достоверно установлено, что электрические заряды раздельно существуют в двух видах – положительные и отрицательные. При этом разноимённые заряды притягиваются, а одноимённые отталкиваются. В квантовой электродинамике понятия знака заряда не существует, а позитрон описывается как электрон, движущийся обратно во времени.
Внешнее проявление свойств формы и размера волноводов электрона с вращающимся полярным магнитным монополем зависит от скорости его движения и состояния степени свободы (связан в атоме или полностью свободен) – это его спин, электрический заряд, геометрическая структура с определёнными размерами и индуктируемая масса184 (в терминах системы СИ или СГС), а также бесконечно долгое время жизни.
Внутренние свойства электрона, ответственные за эти внешние проявления, обусловлены процессами, происходящими в резонансном полярном вихроне, в котором магнитный монополь периодически и всегда движется-вкручивается (имплозия осевая) в одном направлении в сторону к центру поверхности полусферы, где исчезая, заряжает гравитационный монополь. Последний, разряжаясь (внутренняя спираль разрядки гравитационного монополя, показанная на фото 2.15) в поле волновода (внешняя спираль), опять регенерирует его – индуктирует и заряжает магнитный монополь на удалении четверти длины волны, и так идут пульсации четверть-волноводов ГЭММ до бесконечности.
Фото 2.15. Схема электрона, обозначенная электро (синими) и гравпотенциалами (красными) его волновода ГЭММ и структура отбрасываемого контура из зёрен-потенциалов, который формирует его внешнее поле.
Другими словами, бесструктурной точечной пассивной массы электрон не имеет, а имеет внутренний волновод определённых размеров из зёрен-гравпотенциалов, который при высокочастотном обновлении, создаёт внешнее гравитационное поле и которое, взаимодействуя с центральным гравитационным полем Земли, проявляет его собственную массу. Точно также внешний волновод из электропотенциалов формирует отрицательный виртуальный электрический заряд электрона и его электростатическое поле.
Для наглядности проиллюстрируем сказанное графическими схемами фазового объёма электрона и его возможных состояний.
На этой схеме не указана структура динамики переменных гравитационного и магнитного зарядов, а также их внешних полей, как двух форм энергии источников движения в замкнутом пространстве.
На фото 2.16 показана упрощённая схема процесса индукции-регенерации поляризованного магнитного монополя (чёрный шарик) в замкнутом объёме электрона пространственной разрядкой гравитационного монополя (зелёные шарики на красном внутреннем волноводе). В свободном вихроне фотона зарядка магнитного монополя находится в функции противодействующего предыдущему электрического монополя. В замкнутом вихроне электрона эта функция возлагается на гравитационный монополь. Общее для обоих – зарядка магнитного монополя происходит без возбуждения вторичных полей. Разрядка гравитационного монополя – это его вращательное движение (спин) по внутренней красной спирали, т. е. движение спирального зелёного тора. Во время этого движения происходит развёртка-установка своих же зёрен-потенциалов на внутреннем волноводе от большего до меньшего, которые при достижении замкнутости поверхности электрона во внешнем пространстве, как от стационарного источника, проявляют снаружи массу и электрический заряд электрона. Структура значений потенциалов сферы гравитационного монополя, аналогична магнитному – большей сфере спиральных волноводов из зёрен соответствуют меньшие значения по абсолютной величине, а меньшей – наибольшие значения потенциалов. Поэтому, когда гравитационный монополь разрядился, его наибольшая сфера в этот момент находится в точке волновода с максимальной пучностью, откуда начинал свою зарядку и движение вновь индуктированный магнитный монополь сферой большего радиуса, а в данный момент заканчивает свою зарядку сферой меньшего диаметра (положение, чёрный шарик на фото 2.16). Итак, разряжаясь из центральной точки расположения зелёной сферы, гравитационный монополь создаёт волновод из зёрен-потенциалов (масса), и заряжает магнитный монополь. Волновод из зёрен-гравпотенциалов и создаёт постоянное внешнее гравитационное поле – массу покоя электрона.
Фото 2.16. Схема процесса регенерации магнитного монополя гравитационным
Итак, перед моментом исчезновения сферы заряженного до максимума магнитного монополя гравитационный монополь тоже почти зарядился до своего максимального значения. Суммарные внешние локальные поля электрона формируются при обновлении волноводов из зёрен-потенциалов магнитным-гравитационным монополем.
Позитроний – это связанная квантовомеханическая система, состоящая из электрона и позитрона (фото 16а). При относительной кинетической энергии сталкивающихся частиц 13.5 эВ, сечение образования позитрония в 50 раз больше, чем сечение аннигиляции. Поэтому в большинстве случаев перед аннигиляцией будет образовываться связанное состояние – позитроний. Соответственно, энергии переходов в позитронии примерно в два раза меньше, чем энергии соответствующих переходов в атоме водорода, а длины излучаемых волн λ в два раза больше. Потенциал ионизации позитрония 6.77 эВ, что вдвое меньше потенциала ионизации атома водорода.
Фото 16а. Рождение парапозитрония с противоположными спинами.
Так как спины электрона и позитрона равны 1/2, в основном связанном состоянии возможны два значения спина позитрония:
– Спины электрона и позитрона направлены в противоположные стороны, тогда суммарный спин = 0. Это состояние называется парапозитронием.
– Спины электроны и позитрона направлены в одну сторону, тогда суммарный спин = 1. Это состояние называется ортопозитронием.
Из-за различия в значениях спинов в основном состоянии энергия ортопозитрония 3S1 на 8.4·10—4 эВ больше, чем энергия основного состояния 1S0. Время жизни позитрония зависит от взаимной ориентации спинов электрона и позитрона. Среднее время жизни покоящегося парапозитрония в вакууме относительно аннигиляции 125 пс, ортопозитрония – 143 нс. Такое большое различие времени жизни обусловлено тем, что в результате аннигиляции парапозитроний может распадаться на два γ-кванта, в то время как ортопозитроний распадается на три γ-кванта.