Источник заряда массы этих частиц индуктирован волноводом из гравпотенциалов, установленных стационарно внутри фазового объёма замкнутой частицы при разрядке сферы векторного гравитационного монополя. Последний рождается-заряжается путём ускоренного центростремительного движения поляризованного магнитного монополя в центр на поверхности полусферы волновода из электропотенциалов этой частицы со спином 1/2, где и происходит квантовый переход. Между источником заряда движения свободного вихрона с определённой энергией и самыми лёгкими микрочастицами, обладающими зарядом массы, существует квантовый переход энергии магнитного заряда в энергию гравитационного заряда. Так происходит высокочастотное преобразование-замена свободного поступательного самодвижения магнитного монополя со скоростью света (магнитного тока) в его замкнутое вращательно-поступательное движение с образованием фазового объёма покоя из электро и гравитационных потенциалов (стационарные микроисточники электрического заряда и заряда массы) какой-либо элементарной частицы с массой, т. е. высокочастотная смена энергии движения в энергию покоя со свойствами электрического заряда и массы.
4π-поток квантов пространства, т. е. зерна-потенциалы формируется на волноводе замкнутой поверхности элементарной частицы (или ядра ЧСТ) обновляются магнитным монополем. Затем зёрна-потенциалы старого волновода отталкиваясь центрально от первичного, как от одноимённо заряженного источника, рождают внешнее динамическое физическое поле с характеристиками электрического и гравитационного зарядов с дальнодействием от единиц сантиметров для электрона, несколько метров для атомных ядер, 1,5 миллиона километров для гравитационных зёрен-потенциалов ядра ЧСТ Земли.
Магнитного заряда с постоянным зарядом не существует, а существует лишь переменные по заряду вихроны свободного и замкнутого движения.
1.3. Макропространства-поля
Кластеры из различных регулярно повторяющихся атомов или молекул, образуют одно из четырех агрегатных состояний вещества пассивной и инертной массы – твердое, жидкое, газообразное или состояние плазмы, а новое агрегатное состояние материи – ЧСТ57 создают активное состояние центральных полей тяготения. Внешние пространства, над такими кластерами и ЧСТ назовем макропространствами-полями по сравнению с элементарными микропространствами-полями над ядрами, атомами и электронами с их мультиполями. Гравитационные взаимодействия между кластерами начинают превалировать над электромагнитными при массе более планковской – 2,2 х 10—5 грамма.
К таким пространствам относятся внутренние и внешние поля кластеров вещества, астероидов58, планет, звёзд и галактик, а также квазаров и пульсаров.
Отдельный класс дальнодействующих макропространств-полей образуют ядра ЧСТ, которые ещё не произвели на своей поверхности собственного достаточного количества пассивной массы микрочастиц для образования таких кластеров обычного атомно-молекулярного вещества. В этот период их эволюции они активно захватывают и поглощают внешнее вещество, в том числе, атомно-молекулярное вещество, наработанное на поверхности уже светящихся звёзд или газожидких планет, т. е. образуют связанные пары пульсар-звезда или пульсар-планета. Это поля, которые создают квазары и пульсары.
Непрерывный процесс квантования-зарядки и индукции-отталкивания зерен от замкнутой поверхности таких кластеров поляризует окружающее вещественное пространство, превращает его в соответствующее пульсирующее, непрерывно обновляемое поле и создаёт динамически распределённую плотность соответствующих потенциалов поля – эквипотенциальные поверхности. Суммарные внутренние поля таких кластеров определяют его физические свойства и обусловлены плотностью59 распределения потенциалов.
Ярким примером существования пространства магнитного эфира служит возрастающая упругость промежутка между двух сближающихся одинаковых полюсов стационарных магнитов. Этот процесс можно охарактеризовать, только как непрерывно увеличивающийся объём за счёт прибывания одинаковых по знаку потоков магнитных зёрен-потенциалов. Как будет показано в следующей главе гравитационный монополь – это полный антипод магнитного в состоянии покоя. Только магнитный заряд может существовать только в состоянии продольного движения со скоростью света, а гравитационный является покоящимся продуктом квантового перехода магнитной формы материи энергии поля, существующей60 при световой скорости. Поэтому, если технически61 создать вращением кластеров ортогональность в трёх координатах потоков потенциалов соответствующих полей, то дебройлевский квазистационарный гравитационный заряд от магнитных кластеров Д. Серла будет намного эффективнее, чем от диамагнитных жидких В. Шаубергера.
Аналогичный пример макропространства электрического эфира демонстрирует тонкая полоска бумаги, согнутая пополам и подвешенная за этот перегиб на тонкой нити. При контактной подаче на неё заряда электростатического электричества её лепестки расходятся в разные стороны по оси перегиба, показывая увеличение объёма между ними.
Доступный и наглядный пример гравитационного эфира также демонстрирует увеличением объёма пространства вокруг своего источника и его отталкивание от поля ядра ЧСТ – это замкнутые, индуктированные вращением вещественных кластеров, носители «шубы» дебройлевских квантов волн. Они отличаются, как по механизму производства, так и по структуре уложения зёрен-потенциалов при формировании их зарядов. На практике это явление широко известно, как эффект Джанибекова и эффект Д. Серла, а указанная «шуба» в пространстве вокруг гайки-барашка и управляет продольным движением центра масс источника в форме исполнения механического «кульбита». «Тарелки» совершают безынерционный полёт под действием опорных потенциалов тороидального поля вокруг них.
Первичное объёмное гравитационное макропространство-поле в расширяющейся Вселенной создаётся вокруг первичных чёрных сферических тел (ЧСТ-квазары, ЧСТ-пульсары), которые выпадают из атмосферы нашей Вселенной. Эти ЧСТ могут быть образованы только в невещественном пространстве путём преобразования всей длины поступательного движения-трека волновода из электропотенциалов фотона во вращательное движение рождающегося сфероида-клубка переменного и нарастающего радиуса. Как только ЧСТ «упало» в вещественное гравитационное пространство нашей Вселенной в форме уже самовращающегося сферического клубка, начался его распад62 и образовались переменные гравитационное, электрическое и магнитное поля – связанный механический и электромагнитный гипервихрон с его полями. Во время его притяжения к центру (скопления Галактик) ближайшей наибольшей скопившейся пассивной атомно-молекулярной массы, активная масса ЧСТ и, соответственно, объём наиболее эффективного его гравитационного поля всё время увеличивается по величине при постоянном внешнем диаметре. Это обусловлено очень большой длиной волноводов, более 1028 см, что соответствует увеличивающемуся числу обратных фотонов и времени жизни движущихся в волноводах из центра к поверхности электромагнитных квантов до 14 миллиардов лет и более. Производство нейтронов или излучение длинноволновых квантов на поверхности ЧСТ происходит только по истечении этого периода времени. Однако, при этом, наибольшая часть активной «массы» до 80% индуктируется собственными квантами при движении по волноводам на поверхность сфер, расположенных ближе к центру. Поэтому большие по размерам ЧСТ, попав в некоторое крупное шаровое скопление звёзд примерно одинаковой величины, становятся ядром вращающейся спиральной Галактики. Спирали звёзд и газопылевых туманностей в таких Галактиках, сходящиеся рукавами к центру, и образованы всё время увеличивающейся массой и силой поля такой ЧСТ, в отличие от круговых и эллиптических орбит планет вокруг звёзд, ядра которых уже давно находятся в стадии производства нейтронов и долгое время имеют практически постоянную или уменьшающуюся массу. Именно с этим эффектом связано 95,1% формирование полей тёмной массы и энергии во внешних и промежуточных слоях Вселенной. В самых внешних слоях происходит накопление и взаимное отталкивание друг от друга ЧСТ (квазары и пульсары), имеющих одинаковые знаки гравитационных полей, что и подтверждается их распределением (с Z более 7—10, 14,3 красное смещение фотонов) в этой части Вселенной.
Протяжённость полей. Практически установлено, что наиболее эффективное поле активного тяготения Земли распространяется до полутора миллионов километров. Установлено и то, что поля собственного пассивного тяготения астероидов отличаются по протяжённости и качеством притяжения от центральных полей активных планет и Солнца, т. е. практически притяжение к астероидам таких атомно-молекулярных кластеров, какими являются спускаемые аппараты, определяется силами эффекта Казимира в центральном поле Солнца. Пока отсутствует калибровка соответствия размеров ЧСТ размеру эффективного дальнодействия центрального поля. Почему то до сих пор не измерены экспериментально и скорости распространения гравитационных, электрических и магнитных полей. Но уже измерены эффективные пределы дальнодействия стационарных источников и электромагнитных фотонов – они разные. Это доказывает различный механизм и, соответственно, скорость распространения этих полей.
Протяжённость распространения активных гравитационных полей зависит от размеров ЧСТ и сравнима, в минимуме, с видимыми размерами Галактик, планет со спутниками и звёздных систем, содержащих некоторое количество планет, типа Солнечной системы или системы планет Юпитера или Сатурна. При этом, последние газожидкие планеты с меньшим количеством наработанного атомно-молекулярного вещества и большим по размеру ЧСТ сильнее отталкиваются от ЧСТ Солнца, а поэтому дальше находятся от него, чем Марс, Земля, Венера и Меркурий.
Таким образом, пара источник-пространство (поле) индуктирует зёрна-потенциалы, излучает их перпендикулярно своей замкнутой поверхности, а таким образом рождённое пространство-эфир, при этом, является их проводником, и вместе они образуют вещественное пространство. Если бы источники заряда или движения не индуктировали бы непрерывно изменяющееся собственное поле, то вокруг таких источников не происходило бы движения астрофизических объектов, не было бы Галактик и звёздных систем, содержащих планеты и их спутники, не было бы северного сияния и молний, линейных и шаровых, синих струй, спрайтов и эльфов, не было бы стабильных ядер химических элементов и электронов, не было бы атомно-молекулярного вещества и т. д.
Гравитационный эфир – эта самая слабая и самая распространённая форма пространства-поля материи, но и в то же время самая проникающая. В больших макрообъёмах над источниками эти поля проявляют все известные свойства трёхмерного плоского пространства.
Гравитационные аномалии.
Измерения стационарных гравитационных аномалий (ГА) – это отличия от средней величины ускорения свободного падения. Однако, как показывает практический опыт, существуют ещё и импульсные отрицательные выбросы энергии гравитационных полей в небольших по протяжённости областях на поверхности Земли, в основном вблизи разломов.
Такие измерения, проводившиеся еще в 50-х годах прошлого века, показали, что вблизи больших гор отсутствуют положительные ГА, а в океанах, где следовало бы ожидать крупных отрицательных ГА (ведь плотность воды, заполняющей впадины океанов, в 2,5— 3 раза ниже плотности горных пород, залегающих на таком же уровне на материках) ничего подобного не наблюдается.
В настоящее время получены многочисленные и уточняющиеся карты (фото 4.8, 4,9) гравитационных полей Земли, на которой как на рентгеновском снимке видны тени отрицательных аномалий, обусловленные наиболее сильным поглощением потоков зёрен-гравпотенциалов плотным веществом в мантии, рельефы гор из обычного вещества и разломы (пустоты) в мантии и коре Земли при просвечивании их центральным полем активного ядра Земли. Наибольшие отрицательные стационарные гравитационные аномалии обнаружены в Индийском океане и на Восточном побережье Канады. Наряду с такими стационарными аномалиями имеется бесчисленное множество периодических коротких выбросов и медленно меняющихся аномалий63, свидетельствующих о непрерывном перераспределении и медленных фазовых превращениях масс при их движении от мантии к коре. Аналогичные тени отрицательных аномалий от центрального гравитационного поля Земли обнаружены и на обратной стороне Луны.
Источники гравитационного поля бывают следующие:
– центральные, ядра ЧСТ из плотного ядерного вещества, типа нейтрона, это квазары и пульсары, источники активного центрального поля тяготения имеют знак поля плюс и излучают в 4π поток зёрен-потенциалов такого же знака,
– рассеянные в форме кластеров ядерно-атомно-молекулярного вещества, образующие инертно пассивную массу из атомов имеют знак минус, встречаются в виде газовых туманностей, астероидов, комет, метеоритов и Луны, взаимодействия путём поглощения потоков потенциалов со знаком плюс или интерференция противоположных по знаку потенциалов в зоне холодной безмассовой плазмы,
– наработанные распадом собственного ядра ЧСТ, кора и мантия, «жидкое» ядро планеты образуют пассивную массу, находящуюся в поле ещё активного ядра планеты, имеют собственное поле со знаком минус – поглощение или интерференция потоков противоположных потенциалов, что рождает её притяжение,
– источники массы смешанного типа – это звёзды и геологически активные планеты.
– незначительные по величине дополнительные гравитационные заряды, индуктированные вращением и жёстко связанные с вращающимся ядром звёзд и планет.
Поля, соответствующие этим макроисточникам – это различные поля тяготения с разными64 по знаку и по излучающей способности потенциалов.
Самый острый вопрос современности – существуют ли антигравитационные поля?
С позиций САП такие поля должна создавать антиматерия. Однако поиски таковой во всей Вселенной не привели к положительному результату. Такую материю, как магнитный монополь Дирака и эфир, тоже ищут уже много десятилетий.
С позиций реального представления, как и в случае с магнитным монополем, необходимо просто реально уточнить искомые свойства этих полей. Гравитационные поля астрофизических объектов – многокомпонентны. Одна из основных компонент – центральна и имеет положительный заряд, источник которой ЧСТ, и сформирована движением внутри него от центра квантов по волноводам с центростремительным ускорением по окружностям увеличивающегося радиуса к поверхности радиусом до 108 см. Поля пассивной массы ядерно-атомно-молекулярного вещества создаются обратным движением магнитных монополей в замкнутых объёмах к центру со средним размером до 10—15 см. В нашей Вселенной не встречается макроядер космических объектов даже с размером более одного сантиметра, в которых такое вращательное движение частиц65 в них направлено к центру. Однако в отличие от природы техническое воплощение такого зеркального движения возможно – это явление называется центральной или аксиально-струйной сверхтекучей имплозией. Так, например, реализация такого движения в «репульсине» В. Шаубергера, в аппаратах Ф. Свита, Д. Серла и в конвертере В. Рощина, С. Година, однозначно указывает на возможность технической индукции собственного гравитационного монополя со значением его величины соизмеримой с вращающейся массой системы, направлением вектора которого можно управлять путём вращения магнитного кластера по часовой или против часовой стрелки. В природе же существуют лишь индуктированные гравитационные заряды обоих знаков, например, при самодвижении звука. Другими словами, есть реальная возможность решения этой задачи с помощью технических средств и на основе действующих законов в природе нашей Вселенной.
1.4. Гиперпространство Вселенной
Гиперструктура пространства Вселенной носит объемно-сетчатый и ячеистый характер. Бесконечно большой, но конечный и непрерывно расширяющийся «пузырь» нашей Вселенной, далеко неравномерно заселен звездами, галактиками, скоплениями и сверхскоплениями галактик в стенах в видимой ее части размером ~ 1028 см. Исследования вращений спиральных галактик, а также распределений скоростей галактик в скоплениях и сверхскоплениях показало, что большая часть полной массы Вселенной невидима и обнаруживается лишь по гравитационному воздействию на наблюдаемые видимые объекты. Поэтому основная часть гравитационного пространства (95,1%) является невидимой, и, следовательно, дополнительно не освещена потоками фотонов. И как в любом расширяющемся пространстве на первое место по его структуре встает вопрос о месторасположении центра такой сферы. Уже точно установлено Хаббловское расширение Вселенной со скоростью пропорциональной удалению разбегающихся Галактик от нас. Точное установление центра Вселенной, а также ее анализ и изучение ее структуры позволит дать ответ на вопрос о характере направления эволюции материи в пространстве – синтез или распад?
Если считать видимую часть Вселенной ближайшей к центру, то центральным ядром этого «пузыря» должна быть область, где полностью отсутствует тёмная активная материя и энергия или ЧСТ, а ее центр должен быть определен по полному отсутствию центральных гравитационных (звезд, Галактик) полей. Это могут быть россыпи газопылевых туманностей соизмеримых по пассивной массе большим звездным скоплениям. Области видимой части Вселенной, где преобладает структура в виде групп и скоплений галактик, образующих вытянутые «нити» (стены) – филаменты, создают связную трехмерную сетку гравитационных полей – из пузырей и их стенок. Причём в центре пузырей (войд) находятся мощные ядра ЧСТ квазаров66, которые отталкиваются друг от друга одноимёнными положительными полями, одинаково притягивая к себе скопления и сверхскопления Галактик с их наработанной отрицательной массой вещества в уже достаточном количестве. В местах пересечения филаментов располагаются сверхскопления галактик, к которым и притягиваются вновь образованные самые крупные более 108 см ЧСТ, образуя эту ячеисто-сетчатую крупномасштабную структуру Вселенной. Между филаментами находятся пустые области-пространства, в которых отсутствуют галактики, но в их центрах и размещены эти самые крупные ЧСТ, которые и создают эти пустоты-войды. Видимое пространство между Галактиками и звездными скоплениями – суть плоское пространство, регуляризованное дальнодействующими гравитационными полями активных масс, долгоживущими, и самодвижущимися электромагнитными полями, а также разрозненными скоплениями газопылевых облаков и туманностей.
Наиболее удаленные от центра Вселенной внегалактические объекты – квазары, обладающие практически чисто центральным и возрастающим по объёму полем тяготения ЧСТ, принадлежат к более поверхностным слоям Вселенной и объясняют расширение Вселенной и разбегание Галактик. С момента открытия квазаров в 1963 году процесс обнаружения новых квазаров шел очень быстро и к 1988 году их уже насчитывалось около 4000, а сейчас – уже более 20 000. Наблюдения за местоположением обнаруженных квазаров являются важным источником информации о распределении материи активной (однополярной) массы во Вселенной.
Определение расстояний до далеких космических объектов (галактик и квазаров) производится в настоящее время по «красному»67 смещению «Z» их спектров излучения. «Z» определяется отношением величины «красного» смещения какой-либо спектральной линии в спектре наблюдаемого объекта к длине волны этой линии. Квазары – самые далекие видимые объекты Вселенной. Поэтому они являются превосходным предметом для исследования с целью подтверждения той или иной модели Вселенной.
Распределение квазаров. Исследования распределения квазаров в пространстве Вселенной проводились по разным параметрам, в том числе и по величине «красного» смещения. Наиболее далекие квазары наблюдаются на расстоянии в 30—35 миллиардов световых лет, а самый далекий с Z ~ 9 на расстоянии 46 миллиардов световых лет. Плотность квазаров возрастает к периферии Вселенной.
Распределение и формы движения Галактик. Группа галактик формирует филаменты (очень тонкие нитевидные структуры) протяженностью в «миллионы световых лет и составляет скелет Вселенной». Филаменты расположены примерно в 6,7 миллиардов световых лет от Земли. Галактики, скопления галактик и их сверхскопления, «встроенные» в филаменты, помещены между пустотами, создавая тем самым гигантскую «пену». Они концентрируются в изогнутых «стенках» толщиной порядка 10 миллионов световых лет, пересекающихся друг с другом. Некоторые «стенки» прослеживаются на сотни миллионов световых лет. Там, где стенки «смыкаются», галактик особенно много (сверхскопления). Эти области повышенной концентрации галактик образуют в пространстве подобие длинных волокон (цепочек). Внутри этих ячеек, между стенками, также находятся пустоты – «войды», в которых плотность галактик как минимум в десять раз меньше, чем в среднем. Некоторым аналогом такой структуры может служить пена из мыльных пузырей, в которой стенки пузырей и играют роль филаментов. Правда, распределение галактик вдоль «стенок» ячеек, в отличие от распределения мыльного раствора в пузырях, очень неоднородно, да и сами ячейки не обладают правильностью форм. Размеры больших ячеек составляют более сотен миллионов световых лет, но много и более мелких.
Ближайшая к нам «стенка» проходит длинной дугой через южные созвездия Гидры – Центавра – Телескопа – Павлина – Индейца. Образующие ее галактики имеют лучевые скорости в несколько тысяч км/с, и большинство из них удалено от нас не менее чем на 20—30 миллионов световых лет. К этой «стенке» принадлежит и скопления в Деве, и все Местное Сверхскопление, на периферии которого располагается Местная Группа галактик, включающая в себя нашу Галактику. В скоплении галактик в созвездии Девы преобладают эллиптические звездные системы. Среди последних встречаются и сверхгигантские образования, такие, как галактика М87. 16 галактик этого скопления вошли в каталог Месье. Скопления в Деве, в котором насчитывают около 2,5 тысяч галактик, и является центром одноименного сверхскопления галактик. В него входят также, например, скопления в созвездиях Большой Медведицы и Гончих Псов. До скоплений Девы и Большой Медведицы примерно одинаковое расстояние – около 20 мега парсек. Поскольку мы находимся вблизи края этой «стенки», составляющие ее галактики образуют на небе сравнительно узкую полосу, растянувшуюся более чем на 180̊, наподобие того, как звезды Галактики концентрируются в полосу Млечного Пути. Отдельных звезд в галактиках во много раз больше, чем отдельных галактик в стенках ячеек.
К другой длинной «стенке», иногда называемой «Великая стена»68, которая протянулась полосой почти на пол неба, принадлежит богатое хорошо изученное скопление в Волосах Вероники, находящееся на расстоянии почти 300 миллионов световых лет от нас, в центре другой сверхгалактики. Скопление в Волосах Вероники – является центром «Великой стены». Как и другие богатые скопления, оно содержит много эллиптических галактик. Изучение его динамики впервые указало на наличие большого количества невидимой материи. Масса скопления – около 1015 масс солнца.
Одно из крупных сверхскоплений галактик, образованное несколькими скоплениями, удаленное от нас примерно на 200 миллионов световых лет, получило название «Великий Аттрактор». Вселенную можно считать однородной только, начиная с масштаба в несколько сотен миллионов световых лет. Сфера такого или большего размера будет содержать примерно одинаковое количество галактик, скоплений галактик или «войдов», а на более мелких масштабах распределение галактик нельзя считать однородным даже приблизительно.