Книга Технология интеллектуального образования: научные основы. Монография - читать онлайн бесплатно, автор Александр Фролов. Cтраница 6
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
Технология интеллектуального образования: научные основы. Монография
Технология интеллектуального образования: научные основы. Монография
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

Технология интеллектуального образования: научные основы. Монография

Рассмотренные составляющие научно-познавательной компетенции, носящие выраженно инструментальный характер, должны формироваться в рамках специальных педагогических технологий, направленных на интеллектуальное обеспечение образовательной деятельности. Основатель компетентностного подхода Дж. Равен [11] склонен считать критерием интеллектуального развития уровень компетентности личности в той или иной предметной области деятельности, которую можно измерить только в контексте ее интересов и ценностей. Поэтому рассмотренные в данном разделе составляющие научно-познавательной компетенции могут и должны формироваться в соответствии с интересами субъекта учебно-исследовательской деятельности.

2.3.2. Технологии формирования составляющих научно-познавательной компетенции

Конкретных технологий формирования рассмотренных составляющих научно-познавательной компетенции и этой компетенции в целом не удалось обнаружить ни в педагогической и психологической литературе, ни в сообщениях теоретиков и практиков педагогической деятельности на различного рода семинарах и конференциях. Что касается учебно-познавательной компетенции, то в связи с ее формированием упоминаются лишь некие общие направления деятельности. При этом данные материалы публикуются, в основном, в интернете и их авторами являются преимущественно педагоги школ. В качестве весьма характерного примера уровня и детальности таких работ можно привести выдержку из публикации [6]. «При формировании учебно-познавательной компетенции:

• Особенно эффективно данный вид компетентности развивается при решении нестандартных, занимательных, исторических задач, а также при проблемном способе изложения новой темы, проведения мини-исследований на основе изучения материала.

• Создание проблемных ситуаций, суть которых сводится к воспитанию и развитию творческих способностей учащихся, к обучению их системе активных умственных действий. Эта активность проявляется в том, что ученик, анализируя, сравнивая, синтезируя, обобщая, конкретизируя фактический материал, сам получает из него новую информацию. При ознакомлении учащихся с новыми математическими понятиями, при определении новых понятий знания не сообщаются в готовом виде. Учитель побуждает учащихся к сравнению, сопоставлению и противопоставлению фактов, в результате чего и возникает поисковая ситуация.

• При формировании данного вида компетенций учитель использует тестовые конструкции с информационно-познавательной направленностью, тестовые конструкции, составленные учащимися, тестовые конструкции, содержащие задания с лишними данными».

И это всё. И никаких технологий: ведь технология обучения – это способ реализации его содержания, предусмотренного учебными программами, представляющий систему форм, методов и средств обучения, обеспечивающую наиболее эффективное достижение поставленных целей. Педагогическая технология – научное проектирование и воспроизведение гарантирующих успех педагогических действий. В приведенном типичном примере нет конкретных методов, нет средств (конкретных инструментов), нет структуры их использования. Совершенно непонятно, как без специальной инструментальной подготовки к таким интеллектуальным операциям как анализ, синтез, сравнение и обобщение ученик может сам получить новую информацию из фактического материала (см. выше). По крайней мере, процент таких учеников должен быть чрезвычайно мал, как низко и научное качество такой информации в личностном восприятии.

Сказанное выше делает очевидной необходимость создания педагогических технологий, позволяющих учащимся сформировать инструментальные составляющие научно-познавательной компетенции. Такие технологии должны быть предельно универсальны относительно личностных особенностей учащихся. В первой главе под этим понималась возможность достижения уровня общего образования, который должен быть свойственным всем обучающимся, вне зависимости от каких-либо отличающих, разделяющих признаков. В настоящей, второй, главе мы выяснили, что основой возможности формирования ключевых компетенций, от которых зависят жизнеспособность и успешность личности, является определенное образовательное состояние учащегося в пространстве компонентов научно-познавательной компетенции. Такое состояние соответствует достаточной для дальнейшего понимания содержания учебных предметов сформированности научно обоснованных умений и навыков понятийного обеспечения учебно-познавательной деятельности, выявления и установления причинно-следственных связей между рассматриваемыми в учебных предметах явлениями, решения учебных задач на основании этих связей.

Достижение указанного состояния возможно для любого учащегося в результате специально выстроенных логически организованных последовательностей простых и понятных действий. В педагогической литературе такой подход связывается обычно с алгоритмизацией учебной деятельности. Определения алгоритма и алгоритмизации деятельности, а также научная обоснованность приложения подобных операций к предметному обучению в большинстве случаев достаточно спорны. Эта спорность, безусловно, распространяется на термины типа «алгоритмическое предписание», а также на возможность самостоятельного «составления» алгоритмов учащимися. Однако для нас важно существование представлений об алгоритмическом стиле мышления как системе мыслительных способов действий, приемов, методов и соответствующих им мыслительных стратегий, которые направлены на решение как теоретических, так и практических задач, и результатом которых являются алгоритмы как специфические продукты человеческой деятельности.

Поскольку выше было высказано предположение о необходимости пусть чрезвычайно краткого, но специального обучения инструментальному обеспечению научной интеллектуальной деятельности – формированию компонентов научно-познавательной компетенции – такое обучение должно быть основано на устоявшейся структуре научного инструментария. Наличие такой структуры предполагает пошаговость ее освоения. Следовательно, наиболее приемлемыми и эффективными в этом случае представляются в строгом смысле слова алгоритмизированные педагогические технологии. За пределами построения личностью инструментариев (в том числе – инструментария научного познания) алгоритмизированные подходы к образовательной деятельности не имеют смысла.

Итак, в этой главе показано, что общеобразовательный уровень системы непрерывного образования является базовым в отношении осознанного формирования ключевых компетенций, обеспечивающих жизнеспособность и успешность личности. В основе этого формирования лежит развитие инструментальных интеллектуальных возможностей обучающихся. Такой подход в принципе предусмотрен действующим государственным стандартом образования и, в рамках принципа соответствия, не может не учитываться всеми последующими поколениями стандарта. Однако научно обоснованные системные технологии развития инструментальных интеллектуальных возможностей обучающихся в настоящее время не удается обнаружить на всех уровнях системы непрерывного образования.

Для создания и развития таких технологий необходимо рассмотреть структуру их основы – структуру научно-познавательной деятельности – и возможных ее образовательных проявлений.

Литература к главе 2

1.Большой психологический словарь / сост. и общ. ред. Б. Мещеряков, В. Зинченко. – СПб.: прайм-ЕВРОЗНАК, 2005. – 625 с.

2.Выготский, Л. С. Мышление и речь. Психологические исследования [Текст] / Л. С. Выготский. – М., Лабиринт, 1996. – 416 с.

3.Зубарева, И.И., Мордкович А. Г. Математика. 5класс [Текст]: учеб. для учащихся общеобразоват. Учреждений / И. И. Зубарева, А. Г. Мордкович. – 9-е изд., стер. – М.: Мнемозина, 2009. – 270 с.

4.Концепция федеральных государственных образовательных стандартов общего образования [Текст]: проект / Российская академия образования; под ред. А. М. Кондакова, А. А. Кузнецова. – М.: Просвещение, 2009. – 40 с.

5.Кудрявцев, В. Т. Проблемное обучение: истоки, сущность, перспективы [Текст] / В. Т. Кудрявцев. – М.: Знание, 1991. – 80 с.

6.Куклина, Н. П. Формирование ключевых компетенций школьников на уроках математики [Текст] / Н. П. Куклина. – Камчатский край, Елизово: МБОУ СОШ №9. – Режим доступа: http://school9-elz.ru/information/for-parents/formirovanie-klyuchevyx-kompetencij-shkolnikov-na-urokax-matematiki.php

7.Лернер, И. Я. Проблемное обучение [Текст] / И. Я. Лернер. – М.: Знание, 1974. – 64 с.

8.Махмутов, М. И. Проблемное обучение. Основные вопросы теории [Текст] / М. И. Махмутов. – М.: Педагогика, 1975. – 368 с.

9.О Федеральном государственном образовательном стандарте общего образования [Текст]: доклад Российской академии образования / под ред. А. М. Кондакова, А. А. Кузнецова // Педагогика. – 2008. – №10. – С. 9—28.

10.Общие проблемы философии науки: Словарь для аспирантов и соискателей [Текст] / сост. и общ. ред. Н. В. Бряник; отв. ред. О. Н. Дьячкова. – Екатеринбург: изд-во Урал. ун-та, 2007. – 318 с.

11.Равен, Дж. Компетентность в современном обществе: выявление, развитие и реализация [Текст] / Дж. Равен; пер. с англ. – М. «Когито-Центр», 2002. – 396 с.

12.Садовничий, В. А. Традиции и современность [Текст] / В. А. Садовничий // Высшее образование в России. – 2003. – №1. – С. 11—18.

13.Тейяр де Шарден, П. Феномен человека [Текст]: сб. очерков и эссе / П. Тейяр де Шарден. – М.: ООО «Издательство АСТ», 2002. – 553 с.

14.Холодная, М. А.. Интеллектуальное воспитание личности [Текст] / М. А. Холодная, Э. Г. Гельфман // Педагогика. – 1998. – №1. – С. 3—12.

15.Холодная, М. А. Психология интеллекта: парадоксы исследования [Текст] / М. А. Холодная; 2-е изд., перераб. и доп. – СПб.: Питер, 2002. – 272 с.

16.Хуторской, А. В. Ключевые компетенции как компонент личностно-ориентированной парадигмы образования [Текст] / А. В. Хуторской // Народное образование. – 2003. – №5. – С. 58—64.

17.Хуторской, А. В. Технология проектирования ключевых и предметных компетенций [Текст] / А. В. Хуторской // Интернет- журнал «Эйдос». – Режим доступа: eidos.ru›journal/2005/1212.htm

18.Юнг, К. Г. Архетип и символ [Текст] / К. Г. Юнг. – М.: Ренессанс, 1991. – 304 с.

19.Юнг, К. Г. Человек и его символы [Текст] / К. Г. Юнг. – СПб.: БСК, 1996. – 454 с.

Глава 3. Структура научно-познавательной деятельности и образование

3.1. Развитие представлений о структуре научно-познавательной деятельности

Когнитивная система (от латинского cognĭtĭo— познание, узнавание, ознакомление) – многоуровневая система, обеспечивающая выполнение всех основных когнитивных функций живого организма. Научная подсистема когнитивной системы наиболее развита и структурно организованна по сравнению с другими подсистемами. В первой главе было отмечено, что наука ориентирована на получение знания, которое можно воплотить на практике – то есть на получение определенного продукта [26, С. 114]. Таким продуктом науки как разновидности познавательной деятельности является особый вид знаний. Наука – не единственная форма общественного сознания, и другие формы постижения мира компенсируют определенную ограниченность ее возможностей [29, С. 12]. Однако только научное познание обеспечивает генерализацию знаний, то есть создание целостной, устойчивой относительно социальных возмущений структуры, организующей системное порождение и организацию адекватных представлений о мире, включая внутренний мир человека.

В последние десятилетия укоренилось представление о множественности «наук». В частности, усиленно подчеркивается принципиальное различие «естественных» и «гуманитарных» наук; говорится о науках математике, физике, химии, географии и других, отраженных предметами программ общего образования. В вузе появляются новые отдельные «науки» – инноватика, имиджелогия… Особенно вредное воздействие это представление оказывает на сознание молодых людей, и без того с трудом только начинающих приобщаться к научно-познавательной деятельности на общеобразовательном уровне системы непрерывного образования. Такое разделение единого тела науки на принципиально отличные друг от друга фрагменты с необходимостью приводит к разрушению в сознании обучающегося целостной научной картины мира как единственно возможной основы интеллектуального образования.

В работе [41, С. 3] для обсуждения этого обстоятельства с обучающимися предложена следующая метафора (см. рис. 3.1). Как только мы сталкиваемся с принципиально новым для нас явлением, к нему тут же протягиваются «ручки», которые «ощупывают» предмет нашего интереса. Эти отдельные «ручки» (без объединяющего их общего тела) педагог рисует на доске. Включается режим игры.

– «Оно живое!» – говорит первая «ручка».

– «Оно из Северной Африки!» – говорит вторая.

– «Его впервые обнаружили и описали в период правления Тутанхамона!» – подхватывает третья.

– «Оно имеет форму правильного шестиугольника!» – четвертая.

– …

И здесь педагог предлагает ответить на несколько вопросов. Первый вопрос: «Откуда эти „ручки“ протянулись к явлению?»

Учащиеся, которых, как правило, заинтересовывает этот рисунок, живо реагируют на вопрос, и либо отвечают: «Из головы!» («Из мозга!» и т.д.) либо делают соответствующий жест, заменяющий (дублирующий) такой ответ.

Второй вопрос: «Как называются эти „ручки“?» (возвращение к рисунку на доске и перечислению нарисованных «ручек»).

В соответствии с порядком перечисления учащиеся безошибочно и дружно отвечают: «Биология!»; «География!»; «История!»; «Математика!»…

Третий вопрос: «А то, что узнали эти „ручки“, собирается в отдельные емкости или в одну, общую?»

Ответ: «Конечно, в общую!» После этого педагог дорисовывает эту общую для всех «ручек» емкость, пишет на ней слово «наука» и вместе с учащимися определяет это понятие. Затем учащимися подбирается наиболее удачная метафора, отражающая связь науки и «ручек». Учащиеся с легкостью приходят к выводу, что «ручки» вырастают из науки, следовательно, являются ее отраслями.



Рис. 3.1. Образная иллюстрация единства науки в общности ее отраслей


При таком подходе становится понятным существование единого «тела» науки: именно оно имеет структуру, «тесно взаимодействующую с новыми знаниями» [32, С. 8]. Следовательно, и отрасли науки характеризуются принципиально той же структурой вне зависимости от объекта и предмета нашего интереса. А вот методологические особенности деятельностной реализации элементов этой структуры от объекта и предмета зависят, что и служит основой разграничения сфер компетенций отраслей науки.

Таким образом, наличие у профессиональной научно-познавательной деятельности устойчивой структуры, единой для любых направлений этой деятельности, с точки зрения современной концепции познания не вызывает сомнений.

Попытки осознания такой структуры и использования этого осознания в практических целях могут быть связаны с формированием способа действия на основе продуктивного (понятийного) мышления. Только этот тип мышления [17; 18], принципиально предполагающий возможность трансляции результата процесса мышления как продукта, может лежать в основе научно-познавательной деятельности.

Например, в работе [10, С. 64—66] рассмотрены процессы принятия решений в структуре управленческой деятельности на основе подхода, который автор отождествляет с научным. Структуру этого подхода можно представить как последовательность предлагаемых автором действий:



Здесь очевидны неконкретность и понятийная неопределенность содержания элементов структуры, хотя некая структурированность деятельности, предполагаемой в качестве научно-познавательной, присутствует.

Достаточно понятной ситуация становится при рассмотрении предложенной выдающимся психологом А. Р. Лурией структуры подхода к решению задачи [17]:



Из сопоставления этой структуры с предыдущей можно сделать вывод, что исследователи отождествляют научно-познавательную деятельность, в основном, с решением задачи. Разумеется, во многих случаях возникшая задача обеспечивает «запуск» такой деятельности, однако собственно решение является лишь определенным этапом работы. Различные исследователи рассматривают зачастую отдельные этапы этой работы, и потому общая картина структуры научно-познавательной деятельности остается «за кадром». Многие ее элементы подразумеваются либо просто упускаются из виду как якобы хорошо известные и понятные, хотя выше уже было показано, что это не так. В то же время только трансляция именно общей картины научно-познавательной деятельности может формировать соответствующую компетенцию обучающихся, играющую, как было показано в разделе 2.3, системообразующую роль в компетентностном подходе к образованию.

Автор настоящей книги, на основании анализа ряда работ (в том числе – упомянутых выше), посвященных продуктивному мышлению как явлению и как инструменту организации адекватной практической деятельности субъекта, «синтезировал» отраженное в литературе современное представление о полной структуре научного мышления и, соответственно, научно-познавательной деятельности, пользуясь терминологией авторов этих работ. Эта структура может быть представлена так:



Выявленная таким образом структура вполне отражает «дидактический принцип цикличности» [27, С. 12, 17]:



Данный принцип, вытекающий из теории познания, сформулированной А. Эйнштейном, «в настоящее время нашел широкое применение при управлении учебным познанием и конструировании содержания учебного предмета» [27, С. 87]. Такое представление структуры научно-познавательной деятельности является номинативным, поскольку не рассматривает конкретных процессов реализации этой деятельности. Однако уже здесь имеет смысл отметить, что «при всем различии процессов научного познания ученого-исследователя и школьника у них есть и принципиально общее», а именно – упомянутая структура [27, С. 12, 17], которая отражает необходимые, существенные, устойчивые и воспроизводимые причинно-следственные связи между операциями.

Наиболее детально, на процессуальном уровне, с указанием конкретных последовательных операций, структура научно-познавательной деятельности приведена в работах [40, С. 17; 41, С. 3] и на рис. 3.2.



Рис. 3.2. Схематическое представление процессуальной структуры научно-познавательной деятельности


Действительно, «запуск» любой познавательной деятельности, в том числе – научно-познавательной, происходит в результате выделения из окружающего мира или внутреннего мира человека явления, которое почему-либо оказывается значимым для человека, то есть является источником мотивации указанной деятельности. При этом в рамках практического мышления такое выделение не вербализуется (классическое «знаю, но сказать не могу»), что не препятствует развитию познавательной деятельности в конкретном направлении вообще. Однако в случае научно-познавательной деятельности необходимо учитывать, что наука, по определению, есть«деятельность по получению нового знания» [12, С. 20], теоретичного, сверхчувственного, умопостигаемого и рационального. Поскольку наука является формой общественного сознания, для возможности достаточно однозначной трансляции ее представлений указанное выделение должно быть оформлено не просто вербально, но строго понятийно. Необходимо учитывать принципиальное различие между формированием понятия [7] и определением понятия, посредством которого и обеспечивается однозначность трансляции научных представлений с учетом индивидуальности личностного восприятия. Таким образом, выделение явления (проблемной ситуации) из мира оформляется введением определения соответствующего понятия или системы понятий. Только в таком случае можно говорить о последующей целенаправленной научно-познавательной деятельности.

Рассмотрение выделенного явления должно быть системным, то есть в естественной взаимосвязи с другими элементами системы явлений. Эта взаимосвязь воспринимается нами как внутренне присущая системе или ее части особенность, свойство. Очерчивание такого системно определенного круга явлений, в котором рассматривается интересующее нас явление, должно быть четким и формализованным, что также возможно только на понятийно обеспеченном языке. Наконец, для описания выделенного из мира явления необходимо введение меры этого явления или связанного с ним свойства системы. Как будет показано ниже, в главе 4, формирование определения понятия «автоматически» вводит такую меру либо указывает на способ ее введения. В качестве примера можно привести введение определений физических величин, которые являются мерами физического явления или физического свойства. Эти определения являются не чем иным, как определениями соответствующих мерам понятий.

В результате совокупность перечисленных первых трех элементов структуры научно-познавательной деятельности формирует универсальный относительно субъектов деятельности язык, посредством которого процесс и результат этой деятельности могут быть транслированы. Единственность и универсальность этого языка обеспечивают возможность осознания смысла деятельности и, соответственно, как мотивацию ее развития в конкретной познавательной ситуации, так и возможность обучающей трансляции модели этой деятельности.

Вот теперь, когда мы четко понимаем, о чем говорим, что исследуем, и когда есть определенная нами осознаваемая мера предмета исследования, можно проводить измерения.

Однако единичное измерение не имеет смысла: его результат нельзя обсуждать при отсутствии результатов других аналогичных измерений, то есть при отсутствии возможности сравнения. Но, как только появился второй результат – неважно, каким образом нам стало о нем известно – мы имеем дело с зависимостью какого-либо явления от его причины, с причинно-следственной зависимостью. Вот ее-то мы и устанавливаем, измеряя причину и следствие с целью нахождения функциональной связи между ними. Причина всегда характеризуется тем или иным параметром рассматриваемой системы, а следствие – мерой изучаемого явления или свойства. Поскольку в принципе можно измерить все, что угодно, мы это «что угодно» постоянно измеряем и мыслим именно зависимостями, а не результатами единичных измерений. Это справедливо для любой направленности научно-познавательной деятельности – в математике, физике, кулинарии или межличностных отношениях. Зависимость описывается совокупностью результатов измерений причины и следствия. Если речь идет о графическом представлении зависимости, то это совокупность точек, связывающих только измеренные значения величин причины и следствия, в определенном пространстве. Например, зависимость числа друзей конкретного человека (в соответствии с его представлениями) от его возраста представляет собой совокупность точек в пространстве «возраст – число друзей». Эти точки связывают возраст, в котором проводилось измерение, с числом друзей, которое, по мнению данного человека, соответствовало этому возрасту. Зависимость не отображается произвольно проведенной относительно указанных точек линией. Тем более бессмысленно соединение на графике экспериментально полученных точек отрезками прямой линии.

Если причинно-следственная связь устойчива, то она проявляется при измерении соответствующей зависимости в различных условиях. В таких случаях можно говорить о наличии у наблюдаемых зависимостей выраженных общих черт. Например, речь может идти о возможности приближения (описания) таких зависимостей одной и той же аналитической функцией с разными значениями параметров. Тогда можно говорить о закономерности – наличии выраженных общих черт однотипных причинно-следственных зависимостей, полученных в разных условиях.

Наличие закономерности позволяет предложить модель причинно-следственной зависимости, то есть, в конечном итоге, модель изучаемого явления. Модель – это наше упрощенное, идеализированное представление о наиболее существенных сторонах явления. В качестве математического выражения модели обычно рассматривается аналитическая функция, поскольку только такое представление может быть именно математически проанализировано для любых возможных значений мер причины и (или) следствия и, следовательно, может допускать экстраполяции в области ненаблюдаемых экспериментально значений. Это сообщает модели определенную предсказательную силу, что и является, собственно говоря, целью научного познания. Необходимо отметить следующее чрезвычайно важное обстоятельство: модель явления может появиться только на этом этапе научного познания. Если в литературных источниках говорится о наличии модели в самом начале рассмотрения явления, то в лучшем случае имеется в виду «свернутое» прохождение в подсознании всех описанных здесь предыдущих шагов научно-познавательной деятельности. Обычно же в таких случаях имеет место не научно-познавательный, а прецедентный подход к выбору модели: выделив явление из мира, субъект деятельности ищет соответствующий прецедент и выбирает готовую модель еще до начала проведения исследования. Это, к сожалению, характерно для большинства дидактических материалов на всех уровнях непрерывного образования, что негативно сказывается на адекватности представлений обучающихся о рассматриваемой структуре.