Книга Глоссариум по искусственному интеллекту: 2500 терминов. Том 1 - читать онлайн бесплатно, автор Матвей Олегович Баканач. Cтраница 2
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
Глоссариум по искусственному интеллекту: 2500 терминов. Том 1
Глоссариум по искусственному интеллекту: 2500 терминов. Том 1
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

Глоссариум по искусственному интеллекту: 2500 терминов. Том 1


Алгоритм (Algorithm) – это точное предписание о выполнении в определенном порядке системы операций для решения любой задачи из некоторого данного класса (множества) задач. Термин «алгоритм» происходит от имени узбекского математика Мусы аль-Хорезми, который еще в 9 веке (ок. 820 г. н.э.) предложил простейшие арифметические алгоритмы. В математике и кибернетике класс задач определенного типа считается решенным, когда для ее решения установлен алгоритм. Нахождение алгоритмов является естественной целью человека при решении им разнообразных классов задач. Также, алгоритм – это набор правил или инструкций, данных ИИ, нейронной сети или другим машинам, чтобы помочь им учиться самостоятельно; классификация, кластеризация, рекомендация и регрессия – четыре самых популярных типа38.


Алгоритм BLEU (BLEU) – это алгоритм оценки качества текста, который был автоматически переведен с одного естественного языка на другой. Качество считается соответствием между переводом машины и человека: «чем ближе машинный перевод к профессиональному человеческому переводу, тем лучше» – это основная идея BLEU39.


Алгоритм Q-обучения (Q-learning) – это алгоритм обучения, основанный на ценностях. Алгоритмы на основе значений обновляют функцию значений на основе уравнения (в частности, уравнения Беллмана). В то время как другой тип, основанный на политике, оценивает функцию ценности с помощью жадной политики, полученной из последнего улучшения политики. Табличное Q-обучение (при обучении с подкреплением) представляет собой реализацию Q-обучения с использованием таблицы для хранения Q-функций для каждой комбинации состояния и действия. «Q» в Q-learning означает качество. Качество здесь показывает, насколько полезно данное действие для получения вознаграждения в будущем40.


Алгоритм дерева соединений (также алгоритм Хьюгина) (Junction tree algorithm) – это метод, используемый в машинном обучении для извлечения маргинализации в общих графах. Граф называется деревом, потому что он разветвляется на разные разделы данных; узлы переменных являются ветвями41,42.


Алгоритм любого времени (Anytime algorithm) – это алгоритм, который может дать частичный ответ, качество которого зависит от объема вычислений, которые он смог выполнить. Ответ, генерируемый алгоритмами anytime, является приближенным к правильному. Большинство алгоритмов выполняются до конца: они дают единственный ответ после выполнения некоторого фиксированного объема вычислений. Однако в некоторых случаях пользователь может захотеть завершить алгоритм до его завершения. Эта особенность алгоритмов anytime моделируется такой теоретической конструкцией, как предельная машина Тьюринга (Бургин, 1992; 2005)43.


Алгоритм обучения (Learning Algorithm) – это фрагменты кода, которые помогают исследовать, анализировать и находить смысл в сложных наборах данных. Каждый алгоритм представляет собой конечный набор однозначных пошаговых инструкций, которым машина может следовать для достижения определенной цели. В модели машинного обучения цель состоит в том, чтобы установить или обнаружить шаблоны, которые люди могут использовать для прогнозирования или классификации информации. Они используют параметры, основанные на обучающих данных – подмножестве данных, которое представляет больший набор. По мере расширения обучающих данных для более реалистичного представления мира, алгоритм вычисляет более точные результаты44.


Алгоритм оптимизации Адам (Adam optimization algorithm) – это расширение стохастического градиентного спуска, который в последнее время получил широкое распространение для приложений глубокого обучения в области компьютерного зрения и обработки естественного языка45.


Алгоритм оптимизации роя светлячков (Glowworm swarm optimization algorithm) – это метаэвристический алгоритм без производных, имитирующий поведение свечения светлячков, который может эффективно фиксировать все максимальные мультимодальные функции46.


Алгоритм Персептрона (Perceptron algorithm) – это линейный алгоритм машинного обучения для задач бинарной классификации. Его можно считать одним из первых и одним из самых простых типов искусственных нейронных сетей. Это определенно не «глубокое» обучение, но это важный строительный блок. Как и логистическая регрессия, он может быстро изучить линейное разделение в пространстве признаков для задач классификации двух классов, хотя, в отличие от логистической регрессии, он обучается с использованием алгоритма оптимизации стохастического градиентного спуска и не предсказывает калиброванные вероятности47.


Алгоритм поиска (Search algorithm) – это любой алгоритм, который решает задачу поиска, а именно извлекает информацию, хранящуюся в некоторой структуре данных или вычисленную в пространстве поиска проблемной области, либо с дискретными, либо с непрерывными значениями48.


Алгоритм пчелиной колонии (алгоритм оптимизации подражанием пчелиной колонии, artificial bee colony optimization, ABC) (Bees algorithm) – это один из полиномиальных эвристических алгоритмов для решения оптимизационных задач в области информатики и исследования операций. Относится к категории стохастических биоинспирированных алгоритмов, базируется на имитации поведения колонии медоносных пчел при сборе нектара в природе49.


Алгоритмическая оценка (Algorithmic Assessment) – это техническая оценка, которая помогает выявлять и устранять потенциальные риски и непредвиденные последствия использования систем искусственного интеллекта, чтобы вызвать доверие и создать поддерживающие системы вокруг принятия решений ИИ50.


Алгоритмическая предвзятость (Biased algorithm) – это систематические и повторяющиеся ошибки в компьютерной системе, которые приводят к несправедливым результатам, например, привилегия одной произвольной группы пользователей над другими51,52.


Алгоритмы машинного обучения (Machine learning algorithms) – это фрагменты кода, которые помогают пользователям исследовать и анализировать сложные наборы данных и находить в них смысл или закономерность. Каждый алгоритм – это конечный набор однозначных пошаговых инструкций, которые компьютер может выполнять для достижения определенной цели. В модели машинного обучения цель заключается в том, чтобы установить или обнаружить закономерности, с помощью которых пользователи могут создавать прогнозы либо классифицировать информацию. В алгоритмах машинного обучения используются параметры, основанные на учебных данных (подмножество данных, представляющее более широкий набор). При расширении учебных данных для более реалистичного представления мира с помощью алгоритма вычисляются более точные результаты. В различных алгоритмах применяются разные способы анализа данных. Они часто группируются по методам машинного обучения, в рамках которых используются: контролируемое обучение, неконтролируемое обучение и обучение с подкреплением. В наиболее популярных алгоритмах для прогнозирования целевых категорий, поиска необычных точек данных, прогнозирования значений и обнаружения сходства используются регрессия и классификация53.


Анализ алгоритмов (Analysis of algorithms) – это область на границе компьютерных наук и математики. Цель его состоит в том, чтобы получить точное представление об асимптотических характеристиках алгоритмов и структур данных в усредненном виде. Объединяющей темой является использование вероятностных, комбинаторных и аналитических методов. Объектами изучения являются случайные ветвящиеся процессы, графы, перестановки, деревья и строки54.


Анализ временных рядов (Time series analysis) – это раздел машинного обучения и статистики, который анализирует временные данные. Многие типы задач машинного обучения требуют анализа временных рядов, включая классификацию, кластеризацию, прогнозирование и обнаружение аномалий. Например, вы можете использовать анализ временных рядов, чтобы спрогнозировать будущие продажи зимних пальто по месяцам на основе исторических данных о продажах55,56.


Анализ данных (Data analysis) – это область математики и информатики, занимающаяся построением и исследованием наиболее общих математических методов и вычислительных алгоритмов извлечения знаний из экспериментальных (в широком смысле) данных; процесс исследования, фильтрации, преобразования и моделирования данных с целью извлечения полезной информации и принятия решений. Анализ данных имеет множество аспектов и подходов, охватывает разные методы в различных областях науки и деятельности57.


Анализ настроений (Sentiment analysis) – это использование статистических алгоритмов или алгоритмов машинного обучения для определения общего отношения группы – положительного или отрицательного – к услуге, продукту, организации или теме. Например, используя понимание естественного языка, алгоритм может выполнять анализ настроений по текстовой обратной связи по университетскому курсу, чтобы определить степень, в которой студентам в целом понравился или не понравился учебный курс58.


Анализ основных компонентов (PCA) (Principal component analysis (PCA)) – это построение новых функций, которые являются основными компонентами набора данных. Главные компоненты представляют собой случайные величины максимальной дисперсии, построенные из линейных комбинаций входных признаков. Эквивалентно, они являются проекциями на оси главных компонентов, которые представляют собой линии, минимизирующие среднеквадратичное расстояние до каждой точки в наборе данных. Чтобы обеспечить уникальность, все оси главных компонентов должны быть ортогональны. PCA – это метод максимального правдоподобия для линейной регрессии при наличии гауссовского шума как на входе, так и на выходе. В некоторых случаях PCA соответствует преобразованию Фурье, например DCT, используемому при сжатии изображений JPEG59.


Аналитика принятия решений (Decision intelligence) – это практическая дисциплина, используемая для улучшения процесса принятия решений путем четкого понимания и программной разработки того, как принимаются решения, и как итоговые результаты оцениваются, управляются и улучшаются с помощью обратной связи60.


Аналитика данных (Data analytics) – это наука об анализе необработанных данных, чтобы делать выводы об этой информации. Многие методы и процессы анализа данных были автоматизированы в механические процессы и алгоритмы, которые работают с необработанными данными для потребления человеком61.


Аннотация (Annotation) – это специальный модификатор, используемый в объявлении класса, метода, параметра, переменной, конструктора и пакета, а также инструмент, выбранный стандартом JSR-175 для описания метаданных62.


Аннотация объекта (Entity annotation) – это процесс маркировки неструктурированных предложений такой информацией, чтобы машина могла их прочитать. Это может включать, например, маркировку всех людей, организаций и местоположений в документе63.


Анонимизация (Anonymization) – это процесс удаления данных (из документов, баз данных и т.д.) с целью сокрытия источника информации, действующего лица и т. д. Например: анонимизация выписки из стационара процесс удаления данных с целью предотвращения идентификации личности пациента64.


Ансамбль (Ensemble) – это слияние прогнозов нескольких моделей. Можно создать ансамбль с помощью одного или нескольких из следующих способов: различные инициализации; различные гиперпараметры; другая общая структура. Глубокие и широкие модели представляют собой своеобразный ансамбль65.


Антивирусное программное обеспечение (Antivirus software) – это программа или набор программ, предназначенных для предотвращения, поиска, обнаружения и удаления программных вирусов и других вредоносных программ, таких как черви, трояны, рекламное ПО и т.д.66.


АПИ-как-услуга (API-AS-a-service) – это подход, который сочетает в себе экономию API и аренду программного обеспечения и предоставляет интерфейсы прикладного программирования как услугу67.


АПИ набора данных (Dataset API) – это высокоуровневый API TensorFlow для чтения данных и преобразования их в форму, требуемую алгоритмом машинного обучения. Объект tf. data. Dataset представляет собой последовательность элементов, в которой каждый элемент содержит один или несколько тензоров. Объект tf.data.Iterator обеспечивает доступ к элементам набора данных68.


Аппаратное обеспечение (Hardware) – это система взаимосвязанных технических устройств, предназначенных для ввода (вывода), обработки и хранения данных69.


Аппаратное обеспечение ИИ (AI hardware, AI-enabled hardware, AI hardware platform) – это аппаратное обеспечение ИИ, аппаратные средства ИИ, аппаратная часть инфраструктуры или системы искусственного интеллекта, ИИ-инфраструктуры.


Аппаратное ускорение (Hardware acceleration) – это применение аппаратного обеспечения для выполнения некоторых функций быстрее по сравнению с выполнением программ процессором общего назначения70.


Аппаратно-программный комплекс (Hardware-software complex) – это набор технических и программных средств, работающих совместно для выполнения одной или нескольких сходных задач71.


Аппаратный акселератор (Hardware accelerator) – это устройство, выполняющее некоторый ограниченный набор функций для повышения производительности всей системы или отдельной её подсистемы. Например, purpose-built hardware accelerator – специализированный аппаратный ускоритель72.


Аппаратный Сервер (аппаратное обеспечение) (Hardware Server) – это выделенный или специализированный компьютер для выполнения сервисного программного обеспечения (в том числе серверов тех или иных задач) без непосредственного участия человека. Одновременное использование как высокопроизводительных процессоров, так и FPGA позволяет обрабатывать сложные гибридные приложения73.


Априорное (Prior) – это распределение вероятностей, которое будет представлять ранее существовавшие убеждения о конкретной величине до того, как будут рассмотрены новые данные74.


Артефакт (Artifact) – это один из многих видов материальных побочных продуктов, производимых в процессе разработки программного обеспечения. Некоторые артефакты (например, варианты использования, диаграммы классов и другие модели унифицированного языка моделирования (UML), требования и проектные документы) помогают описать функции, архитектуру и дизайн программного обеспечения. Другие артефакты связаны с самим процессом разработки, например, планы проектов, бизнес-кейсы и оценки рисков75.


Архивное хранилище (Archival Storage) – это источник данных, которые не нужны для повседневных операций организации, но к которым может потребоваться доступ время от времени. Используя архивное хранилище, организации могут использовать вторичные источники, сохраняя при этом защиту данных. Использование источников архивного хранения снижает необходимые затраты на первичное хранение и позволяет организации поддерживать данные, которые могут потребоваться для соблюдения нормативных или других требований76.


Архивный пакет информации (AIC) (Archival Information Collection (AIC)) – это информация, содержание которой представляет собой агрегацию других пакетов архивной информации. Функция цифрового сохранения сохраняет способность регенерировать провалы (пакеты информации) по мере необходимости с течением времени77.


Архитектура агента (Agent architecture) – это план программных агентов и интеллектуальных систем управления, изображающий расположение компонентов. Архитектуры, реализованные интеллектуальными агентами, называются когнитивными архитектурами78.


Архитектура вычислительной машины (Architecture of a computer) – это концептуальная структура вычислительной машины, определяющая проведение обработки информации и включающая методы преобразования информации в данные и принципы взаимодействия технических средств и программного обеспечения79.


Архитектура вычислительной системы (Architecture of a computing system) – это конфигурация, состав и принципы взаимодействия (включая обмен данными) элементов вычислительной системы80.


Архитектура механизма обработки матриц (MPE) (Matrix Processing Engine Architecture) – это многомерный массив обработки физических матриц цифровых устройств с умножением (MAC), который вычисляет серию матричных операций сверточной нейронной сети81,82.


Архитектура системы (Architecture of a system) – это принципиальная организация системы, воплощенная в её элементах, их взаимоотношениях друг с другом и со средой, а также принципы, направляющие её проектирование и эволюцию83.


Архитектура фон Неймана (Von Neumann architecture) – это широко известный принцип совместного хранения команд и данных в памяти компьютера. Вычислительные машины такого рода часто обозначают термином «машина фон Неймана», однако соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают принцип хранения данных и инструкций в одной памяти84.


Архитектурная группа описаний (Architectural description group, Architectural view) – это представление системы в целом с точки зрения связанного набора интересов85,86.


Архитектурный фреймворк (Architectural frameworks) – это высокоуровневые описания организации как системы; они охватывают структуру его основных компонентов на разных уровнях, взаимосвязи между этими компонентами и принципы, определяющие их эволюцию87.


Асимптотическая вычислительная сложность (Asymptotic computational complexity) – это использование асимптотического анализа для оценки вычислительной сложности алгоритмов и вычислительных задач, обычно связанных с использованием большой нотации O. Асимптотическая сложность является ключом к сравнению алгоритмов. Асимптотическая сложность раскрывает более глубокие математические истины об алгоритмах, которые не зависят от аппаратного обеспечения88.


Асинхронные межкристальные протоколы (Asynchronous inter-chip protocols) – это протоколы для обмена данных в низкоскоростных устройствах; для управления обменом данными используются не кадры, а отдельные символы89.


Ассоциация (Association) – это еще один тип метода обучения без учителя, который использует разные правила для поиска взаимосвязей между переменными в заданном наборе данных. Эти методы часто используются для анализа потребительской корзины и механизмов рекомендаций, подобно рекомендациям «Клиенты, которые купили этот товар, также купили»90.


Ассоциация по развитию искусственного интеллекта (Association for the Advancement of Artificial Intelligence) – это международное научное сообщество, занимающееся продвижением исследований и ответственным использованием искусственного интеллекта. AAAI также стремится повысить общественное понимание искусственного интеллекта (ИИ), улучшить обучение и подготовку специалистов, занимающихся ИИ, и предоставить рекомендации для планировщиков исследований и спонсоров относительно важности и потенциала текущих разработок ИИ и будущих направлений9192.


Атрибутивное исчисление (Attributional calculus) – это типизированная логическая система, сочетающая элементы логики высказываний, исчисления предикатов и многозначной логики с целью естественной индукции. Под естественной индукцией понимается форма индуктивного обучения, которая генерирует гипотезы в формах, ориентированных на человека, то есть в формах, которые кажутся людям естественными, их легко понять и соотнести с человеческим знанием. Для достижения этой цели AИ включает нетрадиционные логические операции и формы, которые могут сделать логические выражения более простыми и более тесно связанными с эквивалентными описаниями на естественном языке93.


Аффективные вычисления (также искусственный эмоциональный интеллект или эмоциональный ИИ) (Affective computing) – это вычисления, в которых системы и устройства могут распознавать, интерпретировать, обрабатывать и имитировать человеческие аффекты. Это междисциплинарная область, охватывающая информатику, психологию и когнитивную науку94.

«Б»

База данных (Database) – это упорядоченный набор структурированной информации или данных, которые обычно хранятся в электронном виде в компьютерной системе. База данных обычно управляется системой управления базами данных (СУБД). Данные вместе с СУБД, а также приложения, которые с ними связаны, называются системой баз данных, или, для краткости, просто базой данных95.


База Данных ImageNet (ImageNet) – это большая визуальная база данных, предназначенная для использования в исследованиях программного обеспечения для распознавания визуальных объектов. Более 14 миллионов изображений были вручную аннотированы в рамках проекта, чтобы указать, какие объекты изображены, и, по крайней мере, в одном миллионе изображений также предусмотрены ограничивающие рамки. ImageNet содержит более 20 000 категорий, среди которых типичная категория, такая как «воздушный шар» или «клубника», состоит из нескольких сотен изображений. База данных аннотаций URL-адресов сторонних изображений находится в свободном доступе непосредственно из ImageNet, хотя фактические изображения не принадлежат ImageNet. С 2010 года в рамках проекта ImageNet проводится ежегодный конкурс программного обеспечения ImageNet Large Scale Visual Recognition Challenge (ILSVRC), в котором программы соревнуются за правильную классификацию и обнаружение объектов и сцен. В задаче используется «усеченный» список из тысячи неперекрывающихся классов96.


База данных MNIST (MNIST) – это база данных образцов рукописного написания цифр от 0 до 9, содержит 60 000 образцов наборов данных для обучения и тестовый набор из 10 000 образцов. Цифры были нормализованы по размеру и расположены в центре изображения фиксированного размера. Каждое изображение хранится в виде массива целых чисел 28x28, где каждое целое число представляет собой значение в оттенках серого от 0 до 255 включительно. MNIST – это канонический набор данных для машинного обучения, часто используемый для тестирования новых подходов к машинному обучению. Это часть большой базы данных рукописных форм и символов, опубликованной Национальным институтом стандартов и технологий США (NIST)97.


Базовый уровень (Baseline) – это модель, используемая в качестве контрольной точки для сравнения того, насколько хорошо работает другая модель (как правило, более сложная). Например, модель логистической регрессии может служить базовым уровнем для глубокой модели. Для конкретной проблемы базовый уровень помогает разработчикам моделей количественно определить минимальную ожидаемую производительность, которую новая модель должна обеспечить, чтобы быть полезной98.


Байесовская оптимизация (Bayesian optimization) – это метод вероятностной регрессионной модели для оптимизации ресурсоемких целевых функций путем оптимизации суррогата с помощью байесовского метода обучения. Поскольку байесовская оптимизация сама по себе очень дорогая, ее обычно используют для оптимизации дорогостоящих задач с небольшим количеством параметров, таких как выбор гиперпараметров99.


Байесовская сеть (или Байесова сеть, Байесовская сеть доверия) (Bayesian Network) – это графическая вероятностная модель, представляющая собой множество переменных и их вероятностных зависимостей. Например, байесовская сеть может быть использована для вычисления вероятности того, чем болен пациент по наличию или отсутствию ряда симптомов, основываясь на данных о зависимости между симптомами и болезнями100.


Байесовский классификатор в машинном обучении (Bayesian classifier in machine learning) – это семейство простых вероятностных классификаторов, основанных на использовании теоремы Байеса и «наивном» предположении о независимости признаков классифицируемых объектов. Анализ на основе байесовской классификации активно изучался и использовался начиная с 1950-х годов в области классификации документов, где в качестве признаков использовались частоты слов. Алгоритм является масштабируемым по числу признаков, а по точности сопоставим с другими популярными методами, такими как машины опорных векторов. Как и любой классификатор, байесовский присваивает метки классов наблюдениям, представленным векторами признаков. При этом предполагается, что каждый признак независимо влияет на вероятность принадлежности наблюдения к классу. Например, объект можно считать яблоком, если он имеет округлую форму, красный цвет и диаметр около 10 см. Наивный байесовский классификатор «считает», что каждый из этих признаков независимо влияет на вероятность того, что этот объект является яблоком, независимо от любых возможных корреляций между характеристиками цвета, формы и размера. Простой байесовский классификатор строится на основе обучения с учителем. Несмотря на мало реалистичное предположение о независимости признаков, простые байесовские классификаторы хорошо зарекомендовали себя при решении многих практических задач. Дополнительным преимуществом метода является небольшое число примеров, необходимых для обучения101.