Не забывайте, что все это происходило за пять лет до появления интернета[20], поэтому на изображения нельзя было просто навести мышку. В большинстве библиотек имелись только устаревшие издания, а самым близким аналогом всемирной паутины была коробка с микрофишами, где хранился весь архив какого-нибудь журнала. В те годы свежий учебник обладал непревзойденной ценностью. Также исключительным успехом пользовались складные стереоскопы и альбомы-скоросшиватели с парными фотографиями, которые давали нам возможность «полетать» над поверхностью Земли. (К сожалению, в нашем распоряжении не было таких фотографий других планет.) Еще у нас имелся 20-сантиметровый телескоп Шмидта – Кассегрена, а также несколько зеркальных фотоаппаратов и лабораторных микроскопов из университетских излишков. Один друг школы купил нам фотолабораторию для проявки черно-белых снимков, которую установили в маленьком помещении между классными комнатами. У нас была коллекция минералов, которые можно было рассматривать и ковырять, а также по лупе на каждого ученика. Дети делали зарисовки и записи в рабочих тетрадях. Школа приобрела набор для шлифовки камней, капельницы с кислотой для обнаружения карбонатов, несколько сит и объемную физическую карту юго-востока Аризоны – на тот момент новинку, – которая в конце концов истерлась от прикосновений пальцев, в том числе и моих собственных, пытающихся нащупать путь через горы. В качестве объекта изучения в нашем распоряжении имелась целая пустыня.
Первое изображение, полученное с другой планеты. В 1975 г. автоматическая межпланетная станция «Венера-9» совершила посадку в апокалиптическом ландшафте Венеры и выполнила ряд исследований, которые позднее будут многократно повторены в рамках советской космической программы 1970–80-х гг.
Ted Stryk, данные предоставлены Российской академией наук
Преподавание геологии пробудило во мне еще одно воспоминание тех времен, когда мне было около двух лет: мой отец обследует засохшее русло реки в холмах к востоку от Лос-Анджелеса, выискивая и переворачивая какие-то камни. Наша машина стоит под платанами; я помню пятна света, пробивающиеся сквозь листву. Мы приехали то ли на семейный пикник, то ли на экскурсию. Отец улыбается и подзывает меня, чтобы я на что-то посмотрел. Я помню его загорелое лицо, прищуренные от солнца глаза, простые брюки, легкую рубашку и точные движения. Я бегу так быстро, как только могу в незнакомом месте, и добираюсь туда, куда он указывает. Русло перегорожено огромной веткой, в которой застряло несколько больших камней, образовавших нечто вроде скульптуры. Думаю, отец показывал мне ядовитого паука, спрятавшегося в тени между прутьями, – чтобы я никогда не касался таких существ. А может, там была ящерица – одно из животных Нового Света, неизменно вызывавших у него восхищение. Но мне запомнились камни! Не думаю, что мне к тому времени попадалось нечто подобное: разбитые, изъеденные эрозией булыжники больше моих ладоней – зеленые, белые, черные и бледно-красные. В тени они были холодными, на солнце – теплыми. Между самыми большими зияли пустоты, заполненные песком, галькой и листьями.
Это было мое первое полевое геологическое исследование. Я снова вспомню его, когда посадочный модуль «Гюйгенс» пришлет фотографии из полного булыжников русла потока на Титане. Меня всегда притягивали такие места.
* * *Половину имеющихся у меня знаний по геологии я получил, готовясь к своим урокам, поскольку мне нужно было о чем-то говорить. Остальные появились путем осмоса – впитывания идей в ходе общения и взаимодействия с хорошими людьми вроде учителя биологии, который стал моим наставником[21]. Я дорос до понимания того, что у каждого собственный стиль преподавания, и научился ценить возможность контакта с юными умами. Именно благодаря такому осмосу я впервые почувствовал структуру науки, осознал важность спорных идей вроде гипотезы Геи и гипотезы эволюционного бутылочного горлышка, а также научился читать палеонтологическую летопись далеких времен, усвоив, что такое каменноугольный период, архей или кайнозой.
Также я преподавал физику ученикам двух последних классов. Мы проводили неделю за неделей, делая стробоскопические фотографии и выводя уравнения движения Ньютона с помощью поставленного под углом стола для аэрохоккея[22]. Мы вторгались на территорию математического анализа, который лучше всего изучать одновременно с законами движения, потому их можно понять интуитивно (математический анализ в какой-то форме работает в голове у любого человека, когда он, к примеру, ловит бейсбольный мяч)[23]. Ученики все быстрее разгоняли нагруженный кирпичами скейтборд с помощью резиновой ленты, растянутой до определенной длины, чтобы вывести ньютоновский закон о том, что ускорение (на метры в секунду быстрее за каждую секунду) является постоянным, если сила постоянна. Они возились с пожертвованным нам оборудованием: проводили эксперименты с лазерным ретрорефлектором и построили аэродинамическую трубу, используя для визуализации потока воздуха зажженные сигареты (плохая идея). Мы учились фотографировать с помощью камеры-обскуры – причем каждый ученик сделал свою собственную. Помимо знаний в области геометрической оптики, это дало им и представление о работе в лаборатории, поскольку они сами проявляли снимки в темной комнате.
Это была крутая, абсолютно светоизолированная комната для проявления негативов с тусклым красным светом и фотоувеличителем для экспонирования отпечатков, с запасом сменных светофильтров от желтого до пурпурного и ящиком, наполненным масками для изменения яркости отдельных участков изображения. Там же мы держали кюветы с проявителем, который следовало приготовить в нужной концентрации и довести до необходимой температуры. Ты помещаешь туда свой отпечаток на определенное число секунд, а потом промываешь его в закрепителе. Сегодня все существует в виде цифровых данных. Вместо химических опытов в темной комнате или карандашных зарисовок мы пялимся в мониторы и редактируем пиксели. Отчуждение между нами и тем, что мы изучаем, все нарастает.
Однажды вечером, когда я уже работал в университете, мы с другом установили во дворе телескоп, чтобы студенты, посещавшие мой вводный курс по планетологии, могли получить дополнительные баллы, посмотрев на Луну и Венеру. Молодые люди сменяли друг друга около окуляра, когда мимо, направляясь к автобусной остановке, проходила аспирантка с кафедры астрономии[24].
– Ой, а можно мне взглянуть?
– Да, пожалуйста!
– Это Луна?
– Нет, Луна вон там! – показываю на яркий полумесяц несколько левее. – Это Венера.
Аспирантка, подобно Галилею, поразилась, что Венера выглядит совсем как серп Луны, только размытый и ярко-желтый, и воскликнула:
– Никогда еще не смотрела в телескоп!
Непосредственное восприятие фотонов солнечного света, которые доходят до нас, отразившись от верхней поверхности облаков Венеры, создает прямую связь с планетой. Но в использовании теоретических моделей, цифровых данных и компьютеров есть одно неоспоримое преимущество. С помощью опосредованных, но мощных методов мы можем уловить то, что никогда и не надеялись уловить, а потом бесчисленными способами обработать огромные потоки информации. В последнее время компьютеры все чаще упорядочивают, сжимают и даже интерпретируют такие потоки еще до того, как они доходят до нас. Такова реальность современного мира больших данных. Машины соединяют анаглифические стереопары в трехмерные изображения, позволяя нам воспринимать сложные цифровые ландшафты и даже летать над ними. Еще компьютеры обеспечивают нам свободный доступ к огромному количеству астрономической информации и данных об исследованиях планет, делая занятие наукой возможным для каждого, у кого есть интернет. Наберите в поисковой строке браузера слово «Энцелад», и у вас на экране появится прекрасный ледяной мир. Одно нажатие мышью на ссылку сайта лунных экспедиций – и вы уже садитесь на Луну на «Аполлоне-17». Подключитесь к архиву Системы планетных данных (Planetary Data System) Национального управления по аэронавтике и исследованию космического пространства США (National Aeronautics and Space Administration, NASA) – и станьте первым исследователем какого-нибудь марсианского кратера.
Не так уж долго осталось ждать и настоящего телеприсутствия, когда вместо того, чтобы возить пальцем по объемной физической карте, вы будете в реальном времени совершать виртуальные экскурсии: скажем, ваш аватар прогуливается по освещенной тысячами огней лунной лавовой трубе в сотни метров высотой и километр шириной, наблюдая за тем, как еще до прибытия первых астронавтов прямо из лунной почвы печатается новое поселение. Этот опыт можно будет сделать настолько реалистичным, насколько вы пожелаете.
* * *К середине 1980-х запуски космических шаттлов вызывали куда меньше интереса, чем исторические пуски аппаратов серии «Аполлон». Шаттлы не летали на Луну, они поднимались всего на несколько сотен километров на низкую околоземную орбиту, чтобы запускать спутники, проверять оборудование и технологии, а также строить Международную космическую станцию. Все это очень круто, и пуски были чрезвычайно зрелищными, но процесс превращался в рутину – на самом деле NASA хотело, чтобы он стал рутиной, отсюда их плакаты «На работу в космос»[25]. Тем не менее в школе, где я работал, мы все пристально следили за десятым стартом «Челленджера», потому что в его экипаже находилась первая учительница-астронавтка[26]. Тем ясным январским утром каждый шестой американец смотрел трансляцию этого пуска в прямом эфире. Ракета взорвалась, а все члены экипажа погибли, рухнув в море, как Икары.
После того как прошел период вызванного шоком отрицания[27], катастрофа «Челленджера» заставила пилотируемую программу NASA остановиться на несколько лет[28]. Шаттлы были единственными аппаратами NASA, которые могли отправлять в космос большое количество научных грузов, так что наука тоже на какое-то время замерла. Автоматическая межпланетная станция «Галилео» стояла следующей в очереди пусков: это была тяжелая, но хрупкая птичка, разработанная для того, чтобы провести годы на орбите вокруг Юпитера. Лаборатория реактивного движения (Jet Propulsion Laboratory, JPL) NASA использовала наиболее современные технологии[29], чтобы этот аппарат мог выдержать самые тяжелые испытания. Он был рассчитан на семь лет полета в глубоком космосе, но в итоге провел там четырнадцать[30].
Проект «Галилео» и ранее сталкивался с отставаниями от графика, характерными для любой значительной экспедиции, но теперь ему пришлось выносить тяготы складирования в условиях земного притяжения три лишних года, включая тряску в грузовике по пути от JPL до стартовой площадки во Флориде, потом демонтаж, путь обратно в JPL на хранение, а затем, несколько лет спустя, еще одну транспортировку во Флориду. Его радиоизотопный источник энергии был еще в полном порядке, но один из главных механизмов все же отказал. Когда «Галилео» наконец запустили, его похожая на зонтик антенна дальней связи для передачи данных на Землю не смогла раскрыться, поскольку застряли несколько ее спиц. Вся исследовательская программа оказалась зависимой от запасной антенны, способной передавать менее 0,1 % данных. (Благодаря изобретению алгоритма сжатия изображений, который мы сегодня называем форматом JPEG[31], большинства целей экспедиции оказалось возможно достичь, если передавать только самую необходимую информацию.) Едва ли тогда я мог предположить, что пять лет спустя стану новоявленным участником этой полной приключений экспедиции.
Вскоре после катастрофы «Челленджера» профессор геологии местного университета повез нас на экскурсию в пустыню к западу от города[32], в красивый, богатый резкими контрастами и интересными деталями ландшафт, где я часто бродил и в одиночку, но скорее подражая Уильяму Вордсворту, а не Джеймсу Геттону[33]. Я со своими подопечными, а также учителя биологии и химии со своими – мы все рано поутру набились в желтый автобус и отправились в небольшое путешествие. К нашему восторгу, до рассвета выпал сантиметр снега, поэтому кактусы стояли в белых шапках – великолепное зрелище! Когда мы заехали на грунтовую парковку, высыпавшие из автобуса дети сразу принялись играть в снежки и валять дурака. Потом мы прошли километр вниз по тропе, следовавшей вдоль старого русла[34]. Мы обошли его изгиб – по какой-то причине это тоже отпечаталось в моей памяти – и вышли к огромной наклонной плите, сложенной песчаниками и аргиллитами, красными и желтовато-коричневыми, с глубокими следами волновой ряби в несколько пальцев шириной. Когда-то она была частью древнего пляжа, сказал нам профессор, а потом на протяжении миллионов лет то погружалась вглубь, то вновь выходила на поверхность.
Я был заворожен текстурой этой скалы. То, что говорилось на этой и других геологических экскурсиях, начало рассеивать некий туман, понятийный застой в моей голове. Профессор рассказывал, что там, где мы стояли, когда-то – сотни миллионов лет назад – был берег океана. Пыль и наносы, которые откладывались в виде ила, формируя эти покрытые рябью слои, поступали с востока, преодолевая расстояние в добрую сотню километров. Это был результат эрозии поднимавшихся там в тот момент гор. Осадочный материал перемещался древними реками по давно исчезнувшим долинами и приносился в виде пыли миллионами бурь.
Это то, что я помню. Уверен, какие-то детали я путаю, но это описание казалось осмысленным… Реки текут и вызывают эрозию, океаны катят волны на песок, горы поднимаются… Трудно было понять следующую часть – то, что эти борозды в песке и иле были захоронены под слоями нового ила, стали частью дна древнего моря, затвердели под тяжестью более поздних отложений, тоже со временем превратившихся в камень, а миллионы лет спустя были вновь выведены на поверхность, когда из-под всего этого поднялись ввысь новые горы. От таких мыслей начинала кружиться голова. Время и пространство расширялись.
Солнце палило. Посвятив еще некоторое время серьезным делам, мы принялись по очереди позировать для дурацких фото, притворяясь, что мы занимаемся серфингом на пляже. Но у меня возникло беспокойное чувство, которое в следующие несколько дней превратилось в настоящее откровение. Мне приходилось проходить в этом месте и раньше, я смотрел на холмы, высохшие русла и далекие горы, но никогда не знал, что было вокруг меня и под моими ногами. Прежде чем уйти, я снова провел пальцами по песчаной ряби, появившейся 10 млрд дней назад. Реальность оказалась гораздо масштабнее, чем я себе представлял.
* * *Ученые постоянно размышляют на ходу над одним или двумя большими вопросами, из-за чего им случается терять счет времени или натыкаться на ветки. Мой собственный большой вопрос звучит так: если планеты появились из облаков первичного вещества, обращающегося вокруг Солнца, почему они не оказались более или менее одинаковыми, как дождевые капли, сконденсировавшиеся из тучи, или стога сена на скошенном поле? Две самые большие планеты нашей системы, Юпитер и Сатурн, действительно в чем-то схожи – это две сферы, состоящие по большей части из водорода (H) и гелия (He). Следующие по величине планеты, Нептун и Уран, кажется, схожи еще больше – гигантские сферы, состоящие в основном из H2O, H и He, хотя, если уж начистоту, мы пока не посылали экспедицию ни к одной из них. Все это гигантские тела, имеющие атмосферу. Если говорить о среднем размере – о том, что мы можем назвать планетами человеческого масштаба, о телах, по которым мы могли бы гулять, по крайней мере в принципе, – то они так же разнообразны, как государства Европы, особенно если учитывать такие тела, как Плутон и Титан, обладающие всеми геологическими характеристиками планеты.
Фотография поверхности Титана, спутника Сатурна, переданная 14 января 2005 г. посадочным модулем «Гюйгенс» (ESA/NASA).
ESA/NASA/JPL/University of Arizona
Наша планета Земля началась с роя ледяных и каменистых тел, обращавшихся вокруг Солнца и постепенно выраставших в планеты. Сформировавшиеся первоначально планеты сталкивались друг с другом, соединяясь в более крупные тела и их спутники. От них откалывался всякий мусор, смешивавшийся с остатками первоначального роя в хаотичный ансамбль, известный нам теперь как кометы и астероиды. Спустя 100 млн лет суматоха поутихла: столкновения продолжались, пока планеты не стали двигаться по непересекавшимся путям. Все крупные соударения, которые должны были произойти, произошли, и система стала стабильной, как часовой механизм. Ну или почти как часовой механизм.
В этой книге рассказывается об истоках многообразия планет. Чтобы не опережать ход повествования, давайте просто скажем, что почти каждая планета и почти каждый спутник планеты, когда-либо существовавшие в Солнечной системе, были поглощены телом более крупным, чем они сами, и что этот факт невероятно важен. Большинство планет сейчас находятся внутри газовых гигантов (Юпитера и Сатурна) или Солнца, а еще часть – внутри Урана или Нептуна. Считается, что существовало еще два или три гиганта, по массе примерно равных Нептуну, но они были поглощены Солнцем или выброшены из системы скитаться по Галактике. Многообразие – это вопрос того, что у нас осталось: ни одной обыкновенной планеты мы не наблюдаем. Почти каждое из когда-либо существовавших тел поглощено более крупными; оставшиеся – это счастливчики, необычные уже тем, что они выжили.
Человеческое любопытство, ведомое наукой и усиленное гигантскими телескопами, обнаружило сотни миллиардов галактик, в каждой из которых есть сотни миллиардов звезд. Звезд во Вселенной намного больше, чем песчинок на Земле, – 100 млрд триллионов, или 1023, – и мы полагаем, что у большинства из них есть планеты. Мы живем на сложно устроенной голубой планете, и это так необыкновенно, что вопросы встают перед нами практически помимо нашей воли: что такое реальность? Что такое время? Уникальны ли мы во Вселенной? Геологические явления, которые нам предстоит обнаружить по всему космосу, могут заставить Венеру, Энцелад, Ио и Хаумею показаться чем-то заурядным; мы только начинаем догадываться о странностях, которые, возможно, ждут нас там.
* * *Улитка – это геолог, который ощущает неровности камня, его температуру и влажность. То же самое можно сказать о еноте, исследующем отмель в поисках улиток. Геологические исследования приматов более изощрены. Можно ли поцарапать этот камень тем? Пойдет ли он трещинами? Раскрошится ли он или расколется в основном в одном направлении? Какого камень цвета, какая у него поверхность, какой вес? Как он пахнет? Все это ощутимые факты, они доступны любому существу, имеющему органы чувств. Из такого опыта можно извлечь непосредственную пользу.
Неощутимое – это то, что нельзя почувствовать, но можно обнаружить с помощью более совершенных технологий. Классические примеры – это телескоп, который расширяет охват наших органов чувств, и микроскоп, который его сужает. В обоих приборах стеклянные линзы используются для того, чтобы изменить и усовершенствовать зрение, причем (в классическом случае) наши глаза воспринимают те самые фотоны, которые отражаются или испускаются звездой, планетой или крылом мотылька.
Современные исследовательские микроскопы занимают целые здания, а зеркала телескопов весят десятки тонн[35]. От совершенствования оптики и усиления увеличения мы перешли к сбору данных дистанционных измерений всеми возможными способами по всему спектру электромагнитного излучения. Космический аппарат на орбите какой-нибудь далекой планеты может собирать потоки информации от лазерных интерферометров, тепловизоров, рентгенофлуоресцентных спектрометров, детекторов нейтронов, подповерхностных радаров и так далее. Современный космический аппарат, хоть он и не способен принимать научные решения, имеет доступ к куда большему числу способов восприятия, чем астронавт, который в лучшем случае может рассматривать мир вокруг через стекло шлема и осязать поверхности сквозь громоздкие перчатки, но в чьем разуме заложена способность видения – того рода, которое никак не связано с глазами, – и исследования и чье тело обеспечивает взаимодействие разума с тем, что его окружает.
Самый мелкий масштаб нашего непосредственного восприятия – это то, чем ограничено осязание и зрение, примерно 0,1 миллиметра, тонкий волос или крупная песчинка. В нашем распоряжении есть и множество куда более чувствительных специализированных сенсоров, работающих вплоть до молекулярного уровня. Самые большие значения на той же шкале – размеры человеческого тела, метр или два[36]. Менее заметная, но столь же фундаментальная характеристика нашего восприятия – примерно шесть сантиметров, в среднем разделяющие человеческие зрачки. За этими разнесенными объективами наши сетчатки создают стереопары, которые направляются в левое и правое полушария мозга. По некоторым оценкам, мы задействуем до половины вычислительных ресурсов бодрствующего мозга, совмещая в зрительной коре левые и правые изображения, чтобы создавать свою трехмерную реальность.
Вследствие этого чуть ли не самыми важными для людей данными, получаемыми в ходе космических исследований, становятся пары фотографий, сделанные в одинаковых условиях освещенности (обычно примерно в одно и то же время), которые разнесены на угловое расстояние около 7°, чтобы имитировать стереоизображение предмета у нас в руке, если надеть очки с красным и синим стеклами[37]. Используя наши биологические возможности по обработке данных, мы можем рассматривать гору Олимп на Марсе, как будто она находится прямо перед нами. С помощью компьютерной мыши мы можем поворачивать невероятно странное по форме ядро кометы, известной как 67P/комета Чурюмова – Герасименко, и накладывать на него любую другую информацию, например данные спектроскопии или сведения о температуре, создавая тем самым многоцветный виртуальный объект, который можно рассмотреть с разных точек зрения или даже прогуляться в его внутреннем пространстве[38], расширив тем самым границы того, что мы ощущаем как реальность.
Узнавать более труднодоступные неощутимые факты можно в базовых лабораториях по всему миру, где самые точные инструменты используются для того, чтобы фиксировать отдельные атомы во фрагментах земных пород, метеоритов и лунных образцов. Занимающие целые комнаты масс-спектрометры могут определить точное содержание химических элементов в частичке, которая в миллион раз меньше песчинки. («В одном мгновенье видеть вечность, огромный мир – в зерне песка…»[39][40]) Из такой информации исследователи могут понять условия (состав, температуру, давление, момент времени, присутствие кислорода и водорода), в которых вырос конкретный кристалл, и его атомную структуру. На основе этого мы можем выстраивать целые истории и опровергать или уточнять другие истории – например, о том, как формировались планетезимали и планеты. Такие аналитические лаборатории так же дорого строить и содержать, как и астрономические обсерватории; отличие лишь в том, что, вместо того чтобы смотреть вовне, их сотрудники вглядываются внутрь фрагмента породы, совершая открытия в нанодиапазоне, ненамного превышающем размеры самих атомов.
Комета 67P/Чурюмова – Герасименко, около 4 км длиной от одного конца до другого, – первая комета, на орбиту вокруг которой вышел космический аппарат. Эта фотография сделана с расстояния 28 км от центра ядра, размер кадра составляет 4,6 × 4,3 км.
ESA/Rosetta/NAVCAM (CC BY-SA IGO 3.0)
Это кажется волшебством, но вся эта абракадабра тесно связана с математикой, поскольку доводит дедукцию до ее теоретически возможного предела. В науке вы следуете за математикой туда, куда она вас ведет. И очень часто – почти всегда – вы обнаруживаете, что хвост виляет собакой, иначе говоря, что именно данные о самых мелких или самых отдаленных объектах, которые только можно представить, опрокидывают устоявшиеся теории и порождают новые. Совсем как в детективных рассказах, где случайно найденная мелкая улика меняет все. Для того чтобы делать такие скрупулезные замеры, требуется невероятная техническая точность – например, умение использовать в качестве зонда пучок ионов толщиной в нанометры или улавливать свет из самых далеких уголков Вселенной[41].
* * *Легко попасть в ловушку восприятия земной геологии как данности. Вот мы вдыхаем и выдыхаем азот, кислород и некоторое количество аргона, углекислого газа и других газов, заменяя часть O2 на CO2 в рамках нашего самого важного биологического процесса – дыхания. Кислород хорошо знаком нам в газообразном состоянии; тем не менее почти все запасы кислорода на Земле находятся в составе горных пород, где бы и оказался весь атмосферный кислород, если бы он постоянно не высвобождался из CO2 и H2O занятыми фотосинтезом растениями[42].