Когда я начал этим заниматься, то не мог даже отличить одну хромосому от другой, ведь внутри клетки они не вытянуты в линеечку и не разложены по парам – на предметном стекле они выглядят лежащими как попало, под всеми возможными углами, зачастую друг на друге. Чтобы стать квалифицированным цитогенетиком, необходимо как минимум год глазеть в микроскоп на хромосомы под чутким руководством специалиста, и потребуется еще не один год, чтобы стать настоящим экспертом. А когда-нибудь – и возможно, очень скоро – благодаря технологическому прогрессу эта работа и эти навыки окажутся ненужными.
Немалую роль играет то, сколько у человека хромосомного материала. Избыток или недостаток может вызвать серьезные последствия. За исключением пережитка в лице Y-хромосомы, 21-я хромосома самая маленькая, и генов на ней меньше всего. И тем не менее наличие трех копий 21-й хромосомы вместо двух вызывает синдром Дауна – комплексное заболевание, поражающее едва ли не все системы организма. Наличие только одной копии 21-й хромосомы вместо двух вообще летально – плод погибает уже на ранних сроках вынашивания. Есть ряд других синдромов, связанных с целыми хромосомами. Например, у ребенка с лишней копией 18-й хромосомы возникает синдром Эдвардса[10][11]. А что влечет за собой лишняя копия 13-й хромосомы, мы уже знаем[12].
У нынешних карт хромосом долгая история. В ходе ранних цитологических исследований ученые обнаружили, что у кузнечиков имеются гигантские первичные половые клетки (из которых образуются либо яйцеклетки, либо сперматозоиды) и, соответственно, гигантские хромосомы, что облегчало их изучение в эпоху, когда микроскопы были маломощными и непростыми в использовании. К началу XX в. установили связь между хромосомами и наследственностью. Но лишь десятилетия спустя это многообещающее начало получило продолжение и появилось первое твердое доказательство связи между хромосомами и человеческими заболеваниями. До середины XX столетия не было даже известно, сколько хромосом у человека. Считалось, что их должно быть 48, а не 46, и все наблюдатели насчитывали именно 48 хромосом.
Самый знаменитый пример ошибки эксперимента, давшей замечательные результаты, – открытие пенициллина Александером Флемингом. Флеминг, будучи уже известным исследователем, занимался изучением золотистого стафилококка. Он уехал в отпуск, а вернувшись, обнаружил, что в чашку Петри с культурой бактерий, оставленную им в лаборатории (знаменитой царившим в ней беспорядком), проникла плесень и что вокруг колоний плесени образовались участки, где бактерии отсутствовали. Флеминг добился некоторых успехов в исследовании свойств пенициллина, в том числе предпринял робкие попытки выделить это вещество и разработать способ его применения в медицине, но решил, что дело, скорее всего, бесперспективное, и забросил это направление исследований. Задачу по созданию лекарства, применимого на практике, пришлось осуществлять другим – в первую очередь Говарду Флори (австралийцу) и Эрнсту Чейну (британцу, родившемуся в Германии). Причем, хотя Флори и Чейн разделили с Флемингом Нобелевскую премию, их вспоминают куда реже, чем самого Флеминга.
Казалось бы, Тао-Чиу Сюй, который совершил такое же случайное открытие, оказавшее огромное влияние на всю медицину, и который к тому же сумел успешно развить его и дать ему применение, должен был бы стать не менее знаменит, чем Флеминг. Один из капризов истории науки состоит в том, что не всех первопроходцев в равной мере славят за их вклад – вот почему вы знаете, кто такой Флеминг, но едва ли слышали о Сюе.
По правде говоря, это прискорбно, поскольку Сюй был не только великим первооткрывателем в науке, но и замечательной личностью; о нем стоило бы снять хотя бы один фильм. На сайте Американской конференции цитогенетиков с дивным адресом chromophile.org есть его фотография. Она была сделана в 2000 г. В руках у Сюя только что учрежденная АКЦ Премия выдающемуся цитогенетику – непонятная стеклянная штуковина. На снимке Сюй выглядит добродушным старичком. Но за полвека до того, как был сделан этот снимок, он был молод и одержим духом приключений. В начале 1950-х гг. Сюй уехал из Китая, совсем непохожего на Китай нашего времени, изучать плодовых мушек (знаменитый вид Drosophila melanogaster, столь любимый генетиками, в отличие от садоводов) в Техасской лаборатории исследования дрозофил в Остине. Техас много чем знаменит. В числе его достопримечательностей Космический центр в Хьюстоне, стадион «Коттон Боул», миссия Аламо. Будь мир устроен разумнее, Техасская лаборатория исследования дрозофил затмила бы славой любую из них.
Многие годы спустя в «мини-автобиографии», опубликованной в American Journal of Medical Genetics, Сюй восторженно отзывался об открытости Америки, в которую он приехал, и о готовности каждого встречного помочь ему. Он рассказывает, что за все время лишь один раз столкнулся со случаем расизма. По пути с Юга на конференцию в Нью-Гемпшире Сюй нарушил правила дорожного движения, развернувшись через сплошную линию на оживленной трассе, потому что пропустил свой поворот. Один рассерженный таксист притормозил и высказал свое мнение: «Куда прешь, чертов конфедерат!»
Сюй приехал из технологически отсталой страны, где автомобили были редкостью. Из глубокого тыла науки он бросился на передовую в генетике, где ему предстояло удерживать позиции в течение будущих десятилетий.
Ошибка эксперимента в данном случае произошла в 1956 г. и была связана с изготовлением растворов, необходимых для изучения хромосом. Ассистент неправильно прочитал инструкцию и слишком сильно разбавил один из реактивов водой, так что раствор получился слишком слабым. От этого клетки разбухли и хромосомы разделились. И если раньше они представали на предметном стекле в виде спутанного комка, то теперь их стало гораздо легче различить. Сюй ухватился за эту счастливую случайность, определил, в чем состояла столь продуктивная ошибка[13] и как воспроизвести данный эффект, а затем опубликовал результаты.
Почти сразу после этого Джо Хин Чио (которого помнят, по крайней мере в кругу генетиков) и Альберт Леван (о котором почти забыли) сумели применить данный метод для доказательства того, что у человека 46 хромосом, а не 48. Не умея даже правильно сосчитать хромосомы, нельзя надеяться выявить хромосомные аномалии. Теперь такая возможность появилась, и вскоре, в 1959 г., команда французских ученых (тот самый Лежён, который лоббировал букву p, совместно с Мартой Готье и Раймоном Турпеном) сообщила о лишней копии 21-й хромосомы, обнаруженной в клетках детей с синдромом Дауна. Это проложило путь к открытию многих других хромосомных патологий. Что еще важнее, усовершенствование методов цитогенетики дало возможность правильно идентифицировать отдельные хромосомы и создавать точные генетические карты. Проект «Геном человека» и львиная доля современной генетики обязаны своим существованием оплошности, допущенной в лаборатории Сюя.
Тем временем наступил долгожданный прорыв в изучении ДНК: в 1953 г. вышла статья Уотсона и Крика (на основе экспериментальных данных Розалинд Франклин), где описывалось строение ДНК – знаменитая двойная спираль. Их работа пролила свет на связь между ДНК и белками, о которой говорилось в начале этой главы.
Так совместными усилиями Сюя, Уотсона, Крика и множества их предшественников генетика двигалась вперед.
2
Банкет в честь ДНК
Но кое-кто из смертных все же ищетНа праведном пути тот ключ златой,Которым двери в вечность отпирают.ДЖОН МИЛЬТОН[14]Я задумчиво разглядывал две стоящие передо мной стеклянные стопки, наполненные до середины. Они красовались на маленькой деревянной подставке, располагавшейся сразу за моей десертной ложкой. Тот же набор был приготовлен для каждого, кто сидел за столом. Я еще не допил аперитив, и мне не особенно хотелось сразу хвататься за эти стопки, но вместе с тем в воздухе витало праздничное настроение, и я невольно испытывал легкий соблазн.
Впрочем, даже к лучшему, что ни я, ни кто-либо из толпы гостей в огромном банкетном зале отеля не поддался искушению. Это парадное мероприятие – 50-я годовщина открытия двойной спирали ДНК – предстало бы в совсем ином свете, если бы кто-то из гостей оказался отравлен.
Банкет в честь открытия ДНК стал кульминационным событием XIX Международного конгресса генетиков, проходившего в Мельбурне (Австралия) в 2003 г. Его организаторами были люди с живым умом, не страшившиеся возможных последствий. В итоге получился незабываемый, пусть и немного рискованный, вечер. Стены, что вполне ожидаемо, были увиты огромными спиралями из воздушных шариков. Присутствовал, однако, и элемент неожиданности: отвечающие за украшение зала сочли, по-видимому, что двойная спираль смотрится не слишком впечатляюще, так что в результате гирлянды были скручены в виде тройной спирали[15]. Фрэнсис Коллинз, руководитель проекта «Геном человека», спел под гитару Happy Birthday to You… геному человека.
И в довершение всего, перед каждым из гостей стоял яд.
Справедливости ради надо сказать, что это была блестящая идея (если не принимать во внимание потенциальный вред). Одна из стопок содержала почти готовый экстракт ДНК растения. В другой был последний реактив, необходимый для того, чтобы завершить экстракцию. В начале вечера (возможно, как раз вовремя, чтобы избежать неприятных последствий) ведущий дал нам команду перелить содержимое одной стопки в другую – и на наших глазах ДНК выпала в осадок. Она была здесь, перед нами, – волшебная субстанция, ради которой мы все и собрались.
Вы можете собственноручно выделить ДНК в домашних условиях, используя подручные средства (из которых ядовито только одно). Говорят, поваренные книги хорошо продаются, – так что вот вам рецепт.
Ингредиенты:
● клубника (достаточно двух или трех штук, в зависимости от размера);
● вода;
● соль;
● жидкость для мытья посуды;
● медицинский антисептик (70 %-ный изопропиловый спирт), можно заменить денатуратом (техническим спиртом).
Инструкция:
1. Разведите одну чайную ложку соли на полчашки теплой воды.
2. Добавьте в соленую воду две чайные ложки жидкости для мытья посуды. Размешивайте аккуратно (смесь не должна вспениться).
3. Положите клубнику в пищевой пакет с замком и запечатайте. Как следует разомните клубнику руками через пакет.
4. Влейте соленую мыльную воду в пакет с клубникой.
5. Хорошенько перемешайте. Будьте аккуратны, не допустите вспенивания смеси.
6. С помощью кофейного фильтра отцедите смесь из пакета в стакан. Убедитесь, что в стакане достаточно жидкости. На данном этапе лучше не использовать высокий узкий стакан, потому что это осложнит жизнь при завершении опыта.
7. Осторожно влейте спирт в стакан по стенке в соотношении примерно 1:1 с клубничной смесью. Спирт образует слой сверху.
8. Теперь смесь ядовита. Не пейте ее.
9. Дайте ей отстояться. ДНК всплывет наверх, в спиртовой слой, в виде липкой белой массы.
Теперь, если угодно, вы можете взять деревянную шпажку и подцепить ею ДНК из стакана. Потрите ее несколько раз о стенку стакана – и вы увидите интересный эффект: комок на конце шпажки уменьшится. Если осторожно потянуть его вверх из раствора, он растянется от поверхности в длинную тонкую нить. ДНК липкая и притом может укладываться как плотно, так и свободно. При сокращении свободные витки ДНК сжимаются туже – она слипается сама с собой. «Нить» ДНК, которую вы вытащили из раствора, на самом деле состоит из множества отдельных нитей, которые слиплись друг с другом при вытягивании из стакана.
Я настоятельно рекомендую вам попытаться проделать такой опыт. Это особое блаженство – знать, что держишь в руках субстанцию жизни. Пусть даже на вид и на ощупь она напоминает сопли[16].
В тот вечер на банкете в честь ДНК в центре внимания был Фрэнсис Коллинз – не потому, что пел под гитару (хотя и неплохо), а потому, что руководил проектом «Геном человека». За три года до этого события, 26 июня 2000 г., в Белом доме торжественно объявили о том, что человеческий геном секвенирован[17]. Мероприятие проводил президент США Билл Клинтон, а премьер-министр Великобритании Тони Блэр участвовал в нем по спутниковой связи. Коллинз и финансируемый государством проект «Геном человека» разделили в тот день славу с частной компанией Celera. Благодаря грандиозным усилиям этой компании под руководством ее президента Крейга Вентера секвенирование человеческого генома превратилось в соревнование, по итогам которого коммерческий и некоммерческий проекты успешно сыграли вничью.
Кто-то скажет, что с празднованием немного поторопились, поскольку на тот момент в последовательности нуклеотидов было очень много пробелов (не менее 150 000) и нерасшифрованными в ней оставались еще как минимум 10 %. В самом деле, 14 апреля 2003 г. снова объявили о том, что проект теперь действительно завершен, но даже тогда пробелы по-прежнему были. К 2004 г. удалось добиться гораздо большего, но все еще оставался 341 пробел[18], и по сей день работа не совсем закончена.
Тем не менее на момент объявления о секвенировании генома в 2000 г. был получен хороший предварительный результат[19] – и, строго говоря, именно об этом тогда и сообщили, то есть о завершении предварительной расшифровки. В большинстве случаев исследователи могли обратиться к этим данным, рассчитывая получить подробную информацию об интересующем их участке ДНК. Это было захватывающее время, и все же те из нас, кто занимался клинической медициной, по-прежнему не вполне понимали, для чего нам может пригодиться расшифровка генома.
В один прекрасный день на исходе 2001 г. нам на кафедру пришел пакет, который наглядно это подтвердил. В нем был диск с расшифровкой человеческого генома, присланный нам в подарок компанией Celera. Мы с воодушевлением вскрыли конверт, вставили диск в компьютер и принялись исследовать его содержимое. Однако тут же впали в ступор. Мы понятия не имели, как читать полученную информацию и как соотнести ее с данными наших пациентов. Как позже выяснилось, понадобилось еще больше десятка лет, чтобы работа с геномными данными стала обычной составляющей в практике клинической и лабораторно-диагностической генетики. Теперь я каждый рабочий день пользуюсь браузером геномов, разработанным в Калифорнийском университете Санта-Крус (UCSC Genome Browser)[20]. В моей работе эта программа незаменима.
Так что же там, в геноме? Что именно я могу найти благодаря UCSC?[21]
Белое клейкое вещество, которое вы извлекли из клубники, состоит из четырех видов химических «кирпичиков» – нуклеотидов, важными составными частями которых являются азотистые основания: аденин, цитозин, гуанин и тимин[22]. Они обозначаются начальными буквами А, Ц, Г и Т (или A, C, G, T соответственно). В человеческом геноме примерно 3 млрд азотистых оснований. Обычно они объединены в пары, поскольку ДНК существует в форме двойной спирали. Эта двойная спираль состоит из двух отдельных нитей, комплементарных друг к другу. А (аденин) на одной нити соединяется водородными связями с Т (тимином) на другой нити, а Ц (цитозин) – с Г (гуанином), поэтому двойная спираль выглядит так:
* Gattaca («Гаттака») – название фильма-антиутопии 1997 г. о будущем генетических технологий, составленное исключительно из начальных букв азотистых оснований ДНК. – Прим. науч. ред.
Две нити направлены в противоположные стороны – у ДНК есть направление, связанное с порядком ее копирования (транскрипции) и трансляции при синтезе белков. Поэтому последовательность, комплементарная последовательности ГАТТАЦА, будет прочитана клеточным механизмом как ТГТААТЦ, а не ЦТААТГТ.
Три миллиарда оснований ДНК – это ужасно много. Для наглядности – вот фрагмент генетического кода человека:
Это один из моих любимых участков генома – кусочек гена TBX20, сыгравшего звездную роль в моей диссертации. Если печатать тем же шрифтом с тем же интервалом на бумаге формата A4 (с одной стороны), то для распечатки всего человеческого генома понадобится 781 250 листов. Допустим, каждый лист толщиной 0,1 мм; тогда вам понадобится стопка бумаги высотой более 78 м – ниже, чем статуя Свободы, но выше, чем Сиднейский оперный театр. Без ключа к расшифровке, конечно, все это будет лишь набором ничего не значащих букв. С ключом эта стопка бумаги откроет несметные научные сокровища.
Так что же является ключом? И что скрывается в геноме? Как выясняется, ключ тут не один, здесь нужен скорее целый набор ключей. ДНК способна поведать много историй, если уметь их читать.
Мы уже говорили в предыдущей главе, что наши хромосомы образуют пары[23] просто потому, что половину генетической информации вы получаете от мамы, а половину – от папы. В свою очередь вы передаете каждому из детей также половину своих хромосом. Таким образом, одна копия первой хромосомы получена от мамы, другая – от папы, и так со всеми хромосомами. Первая хромосома самая крупная. Она состоит примерно из 250 млн нуклеотидов, и на ней располагается свыше 2000 генов. Самая маленькая, 21-я, хромосома состоит менее чем из 50 млн нуклеотидов и содержит только пару сотен генов. Скромная Y-хромосома лишь немногим длиннее, чем 21-я, но в ней всего около 50 генов.
Кроме того, в клетке вне клеточного ядра тоже есть ДНК: у нас имеется второй геном, совсем крошечный (всего 16 569 нуклеотидов и 37 генов). Он находится в структурах под названием митохондрии – о них речь пойдет чуть позже.
Что касается генов, то о них вы, без сомнения, слышали, ведь это самые известные компоненты генома. Как уже говорилось, они играют роль инструкции, по которой клетка синтезирует белки, которые, в свою очередь, выполняют множество сложных задач, необходимых клетке, чтобы выжить и принести пользу вашему организму. Однако те участки генов, которые транслируются для синтеза белков, составляют лишь около 1–2 % генома.
Ученые до сих пор спорят о том, для чего нужна остальная часть генома и насколько она нужна. Среди некодирующих отрезков есть такие, которые, безусловно, полезны и важны. Например, центромера – место перетяжки на хромосоме – необходима для того, чтобы при делении клетки копии хромосомы направлялись куда им положено. Сбой этого процесса ничего хорошего не сулит. На концах хромосом расположены теломеры – структуры, образующие защитный колпачок. Возможно, вам приходилось слышать песню британского комика Бернарда Бресслоу о том, для чего нужны пятки:
Пятки нужны, чтоб носки не спадалиИ при ходьбе концы ног не страдали…Хромосомы, как известно, в носках не ходят, но, как и ногам, износ концов им вреден. По мере вашего старения теломеры и в самом деле изнашиваются, понемногу укорачиваясь с каждым делением клетки. При многих формах рака они становятся существенно короче, чем в норме, или вообще исчезают, так что концы хромосом оголяются и становятся уязвимыми для повреждений. Как ни странно, затем следует восстановление теломер: когда клетки перерождаются в злокачественные, их хромосомы обретают новые, устойчивые теломеры. Отчасти поэтому раковые клетки становятся «бессмертными».
Хотя участки генов, кодирующие белки, занимают всего 1–2 % генома, сами гены составляют примерно четверть генома. Секрет этого несовпадения в том, что большинство генов представляет собой смесь двух разных типов нуклеотидных последовательностей – интронов и экзонов. Экзоны кодируют белки, то есть их последовательности указывают, из каких аминокислот синтезировать белок, а также когда начинать и завершать синтез. Напротив, интроны ничего не кодируют, и, хотя у них, несомненно, есть какая-то функция, нам до сих пор не вполне понятно, какая именно[24]. Интроны могут быть поистине огромными – многотысячные цепочки нуклеотидов. Иногда они настолько велики, что целый ген может уместиться внутри интрона другого гена, обычно направленного в противоположную сторону, на соседней нити ДНК. Двойная спираль – улица с двусторонним движением.
В приведенном выше фрагменте гена TBX20 можно увидеть как экзоны, так и интроны. Жирным шрифтом выделены экзоны, остальное – интроны. Можно увидеть даже кое-какие инструкции по работе генома, записанные прямо здесь в последовательности ДНК. В начале каждого интрона стоят нуклеотиды ГТ, в конце каждого интрона – АГ. Вместе ГТ и АГ образуют ключевую часть указания для клеточных механизмов, в котором сообщается: «Здесь интрон. Для белка не нужен – вырезать»[25].
Какой же процент человеческого генома действительно занят делом? По правде говоря, это пока еще не известно. В сентябре 2012 г. вышли одновременно 30 научных статей с результатами одного из крупнейших проектов – проекта ENCODE (ENCyclopedia Of DNA Elements – «Энциклопедия элементов ДНК»), являющегося дальнейшим развитием «Генома человека». Согласованное взаимодействие огромного числа ученых, благодаря которому сразу 30 статей вышло в свет, стало не менее удивительным достижением, чем сами научные данные, приведенные в этих публикациях. По утверждению участников исследовательской группы ENCODE, были раскрыты функции 80 % генома. Большая часть его, как предполагалось, занимается контролем функционирования остальных частей – довольно бюрократический образ клеточной биологии. Это заявление сразу вызвало немало критики, и споры все еще продолжаются. Недавно вышла статья, в которой утверждается, что функционально лишь 8 % генома. Вот это разброс! Не знаю, каков верный ответ на самом деле, но 8 %, по-моему, маловато, а 80 % – уже перебор.
Изрядная доля генома похожа на генетический лом – это гены и прочие элементы, утратившие свою функциональность в ходе эволюции. Например, у нас много генов обонятельных рецепторов, которые поломаны и никак не действуют: на более ранних стадиях эволюции наши предки нуждались в тонком восприятии запахов, чтобы выжить, но мы уже давно отлично справляемся, располагая довольно слабым обонянием. Поэтому, когда в данных генах произошли мутации, это не вызвало проблем и поломанный вариант просто передался будущим поколениям. Вы унаследовали сотни поломанных генов от родителей и в свою очередь передадите их дальше, а может быть, уже передали – и они все так же останутся неработающими.
Есть также много повторяющихся последовательностей, как будто не имеющих особого смысла. Иногда вирусы вставляют свою копию в ДНК хозяина, и по всему геному оказывается разбросано довольно много участков, напоминающих древние вирусные последовательности. Есть участки ДНК, скопированные в ходе так называемых событий дупликации. Если что-то имеется в двух экземплярах, не страшно, если один из них сломается, поэтому в результате у вас нередко оказываются две версии гена – рабочая и нерабочая (псевдоген). А еще в ДНК есть кусочки, которые, по-видимому, возникли как простой побочный эффект стремления ДНК к самокопированию: длинные-длинные последовательности, которые выглядят абсолютно бессмысленными (АТАТАТАТАТАТАТАТАТ …).
В общем и целом это нам как будто особо не мешает. Не похоже, чтобы человеческий геном подвергался отбору на эффективность, а если такой отбор и существует, над ним, очевидно, одерживают верх склонность ДНК к самокопированию и различные механизмы, привносящие в последовательность ДНК новые отрезки. Многие другие организмы отлично себя чувствуют с геномами еще большими, чем у нас, и, соответственно, при еще большей доле паразитической ДНК. Амеба Polychaos dubium, как утверждают, обладает геномом, по размеру более чем в 200 раз превышающим наш. У обычного лука геном в пять раз больше нашего, однако все же это мы едим лук (или извлекаем из него ДНК), а не наоборот. В то же время геном рыбы фугу из семейства иглобрюхих меньше нашего в восемь раз – а рыба все-таки устроена несколько сложнее лука.
Некоторые данные, по всей видимости, указывают на то, что слишком большой геном обходится дорого, по крайней мере в трудные времена. Есть такое растение – теосинте, которое считается предком кукурузы. В 2017 г. вышла статья, в которой сравнивались геномы различных видов теосинте, растущих на разных высотах. У многих растений геномы огромные, но, как оказалось, у теосинте чем выше в горы, тем меньше геном. Если вы живете в суровых условиях высокогорья, то не можете позволить себе зря тратить энергию на копирование ДНК, не выполняющей никакой полезной работы.
Можно, конечно, допустить, что у человеческого генома как раз нужный размер и каждый элемент в нем выполняет важную роль. Однако подобное чудо маловероятно. Скорее всего, наш геном действительно несет значительное количество «мусорной» ДНК.