Для большего понимания настоящего эффекта укажем, что пусть изначально задаётся определение кинетической энергии частицы согласно (1), откуда видно, что если выполняются условия действия квантового туннельного эффекта, то получается, что импульс такой частицы, удовлетворяющая поставленным условиям должен становиться мнимой величиной и казалось бы это никак не могло быть в реальности, но вместе с этим решение знаменитого уравнения Шрёдингера (2), где потенциальная энергия частицы является константой имеет решение (3), откуда выводиться значение для импульса как (4).
И хотя в данном случае импульс становиться мнимым, когда величина потенциального барьера начинает превышать полную энергию частицы, как это и было указано. Для понимания природы и причин настоящего явления можно прибегнуть к представлению отдельной модели с тремя потенциальными барьерами, для каждой из которых будут определены свои волновые уравнения, после чего будет выведено конечное выражение, либо можно воспользоваться более наглядным соотношением неопределённости Гейзенберга. Как можно видеть из первого соотношения для неточностей координат и импульса, при более точном определении координат частицы уменьшается точность её импульса, за счёт чего можно говорить о нахождении величины импульса частиц в любом подходящем множестве величин в это время, что и позволяет частице обладать комплексным значением импульса, что и становиться причиной туннельного эффекта. Однако, в таком случае будет иметь место определение величины определяющая вероятность прохождения частицы через этот барьер.
Так настоящий коэффициент прохождения определяется согласно первоначальной модели, согласно которой пусть имеются три потенциальных барьера, первая и третья из которых имеют нулевую высоту, а вторая достаточно высокую, чтобы превышать значение полной энергии частицы. В таком случае, во время приближения частицы к потенциальному барьеру, определение её координаты увеличивается, за счёт чего по соотношению неопределённости уменьшается определённой её импульса, после чего определённое количество её составных могут проходить через барьер, а определённая может быть отражена. Именно отношение этих двух компонентов дают некое определение тока вероятности, где в качестве числителя выступает ток вероятности падающей на барьер волны, а на роли знаменателя – ток вероятности проходящей через барьер части волны. Также обратным значением этой величине является ток отражения, откуда уместным является определение их суммы, равной единице.
Кроме этого, значение этих величин, согласно закономерностям квантовой механики можно определить через квазиклассическое приближение, где определяются соотношения, согласно (5).
В таком случае можно говорить о том, что, если имеется частица, с определённым значением энергии, меньшая чем значение потенциального барьера, также становиться возможным определить вероятность, с которой эта частица может пройти через этот потенциальный барьер. Так, для электрона с изменяющейся кинетической энергией, для прохождения потенциального барьера в 1 ГэВ, при увеличении её энергии до этого значения, функция вероятности изменяется согласно Графику 1.
В данном случае можно будет наглядно наблюдать за тем, как начинает изменяться вероятность прохождения и уже, когда величина становиться равной величине потенциального барьера, даже тогда нельзя уже говорить о полном прохождении (6).
И хотя, с одной стороны, разбор настоящего эффекта, может быть, в изначальном понимании сделан для описания более известных практических явлений, но как оказалось существуют новые методы, согласно которым можно посредством этой технологии передавать энергию/информацию практически на неограниченное расстояние. Дело в том, что сегодня возможно передавать частице огромное значение энергии вплоть до десятков ТэВ, что уже равняется величине потенциального барьера, состоящий из 1 000 атомов, стоящие на пути частицы, то есть она может пройти сквозь тысячу атомов не затратив энергию с вероятностью в 64%, при этом изначально придавая определённое направление в пространстве настоящей частице. А поскольку частица не меняет своей энергии после прохождения барьера, разве что могут быть затрачены ресурсы только в качестве преодоления вероятности, то можно говорить о передаче оставшейся величины энергии на огромное, космическое расстояние.
Так если энергия в 1 ТэВ становиться достаточной для преодоления тысячи атомов водорода, с диаметром в 10—11 м, откуда можно говорить о том, что этой энергии будет достаточно для преодоления 10—8 м. Казалось бы слишком малое расстояние и сама технология не слишком рентабельна, но стоит учесть как минимум то, что такой способ не требует использования проводников и для передачи, к примеру, энергии на МКС, расстояние до которой оценивается в максимальной точке – 430 км, стоит направить частицы с энергиями 4,3*1025 эВ.
Значение, которое становиться почти нереальным с учётом современных устройств, но это определение подходит, если учитывать, что ток частиц будет измеряться в мА или мкА, что можно определить заряд, через (7).
Где, из имеющейся величины энергии можно вычислить скорость (8), но для достаточного решения, стоит изначально разложить полученный корень с преобразованием (9—10) в ряд Тейлора (11), откуда можно будет получить значение в процентном соотношении.
Таким образом, можно было определить приближение скорости света, которое можно принимать практически равным величине скорости света. И указывая, что в качестве диаметра пучка принимается 1 мкм, можно говорить о получаемой величине заряда и количестве частиц (12).
Следовательно, можно говорить о том, что можно направить энергию на расстояние в 430 км в размере 4,3*1019 Вт мгновенно, когда же эта же величина может направиться за 1,43 мкс на то же расстояние, при действии световым излучением с такой же мощностью. И если на такое, сравнительно близкое расстояние этот метод опять-таки кажется не рентабельным, то можно прибегнуть к случаю, когда расстояние составляет 1 световой год. Тогда стоит прибегнуть к иному определению.
Изначально, стоит указать, что плотность вещества в космосе составляет 3*10—28 кг/м3, что в свою очередь в 2,9967*1026 раз менее плотно, чем плотность оцениваемого водорода, равный 0,0899 кг/м3, откуда можно говорить, что при уже определённой энергии в 1025 эВ частица может преодолеть в космосе во столько же раз большее расстояние или по аналогии 1,288567*1029 км, что составляет 13 629 492 816 374,85 световых лет, что даже больше радиуса обозримой вселенной в 137 927,5 раз. Следовательно, для того, чтобы отправить энергию на расстояние в 1 световой год достаточно использовать энергию частицы, равную 733,7 ГэВ при имеющейся скорости в (13), можно определить величину заряда (14).
Таким образом, стало возможным говорить о создании нового метода передачи энергии на огромные расстояния практически мгновенно, не тратя на это несколько лет, при этом минимальное значение, разумеется, равняется величине заряда элементарного заряда, а следовательно, и тока (15), при минимальной энергии для 1 светового года в 733,7 ГэВ.
То есть, можно затрачивая в общем понимании, придавая частице всего лишь 2,762669*10—35 Вт энергии, можно направить любое количество энергии мгновенно, начиная от этого значения до бесконечности на практические любое расстояние от планеты мгновенно, не затрачивая миллиарды лет на преодоление светом или иным излучением всех преград.
Использованная литература
1. Бондарев, Б. В. Курс общей физики. В 3-х т. Т. 2. Электромагнетизм. Оптика. Квантовая физика: Учебник для бакалавров / Б. В. Бондарев. – М.: Юрайт, 2013. – 441 c.
2. Бондарев, Б. В. Курс общей физики. В 3 кн. Кн. 2: Электромагнетизм, оптика, квантовая физика: Учебник / Б. В. Бондарев, Н. П. Калашников, Г. Г. Спирин. – Люберцы: Юрайт, 2015. – 441 c.
3. Бондарев, Б. В. Курс общей физики. Книга 2: Элетромагнетизм, оптика, квантовая физика: Учебник для бакалавров / Б. В. Бондарев, Н. П. Калашников, Г. Г. Спирин. – Люберцы: Юрайт, 2016. – 441 c.
4. Бондарев, Б. В. Курс общей физики. В 3 кн. Кн. 2. Электромагнетизм. Волновая оптика. Квантовая физика / Б. В. Бондарев. – М.: Высшая школа, 2005. – 438 c.
5. Бояркин, О. М. Физика частиц – 2013: От электрона до бозона Хиггса. Квантовая теория свободных полей / О. М. Бояркин, Г. Г. Бояркина. – М.: Ленанд, 2016. – 296 c.
6. Бояркин, О. М. Физика частиц – 2013: Квантовая электродинамика и Стандартная модель / О. М. Бояркин, Г. Г. Бояркина. – М.: КД Либроком, 2015. – 440 c.
7. Бояркин, О. М. Физика частиц – 2013: От электрона до бозона Хиггса. Квантовая теория свободных полей / О. М. Бояркин, Г. Г. Бояркина. – М.: Ленанд, 2018. – 296 c.
8. Бояркин, О. М. Физика частиц – 2013: Квантовая электродинамика и Стандартная модель / О. М. Бояркин, Г. Г. Бояркина. – М.: КД Либроком, 2016. – 440 c.
9. Воронов, В. К. Физика на переломе тысячелетий: Физика самоорганизующихся и упорядоченных систем. Новые объекты атомной и ядерной физики. Квантовая информация / В. К. Воронов, А. В. Подоплелов. – М.: КомКнига, 2014. – 512 c.
10. Гриббин, Дж. В поисках кота Шредингера. Квантовая физика и реальность / Дж. Гриббин. – М.: Рипол-классик, 2019. – 352 c.
11. Журавлев, А. И. Квантовая биофизика животных и человека: Учебное пособие / А. И. Журавлев. – М.: Бином. Лаборатория знаний, 2011. – 398 c.
12. Иродов, И. Е. Квантовая физика. Основные законы: Учебное пособие / И. Е. Иродов. – М.: Бином, 2014. – 256 c.
13. Иродов, И. Е. Квантовая физика. Основные законы: Учебное пособие / И. Е. Иродов. – М.: Бином. Лаборатория знаний, 2010. – 256 c.
14. Иродов, И. Е. Квантовая физика. Основные законы: Учебное пособие / И. Е. Иродов. – М.: Бином. Лаборатория знаний, 2004. – 272 c.
15. Иродов, И. Е. Квантовая физика. Основные законы / И. Е. Иродов. – М.: Бином. Лаборатория знаний, 2010. – 256 c.
16. Иродов, И. Е. Квантовая физика. Основные законы: Учебное пособие для вузов / И. Е. Иродов. – М.: Бином. ЛЗ, 2013. – 256 c.
17. Камалов, Т. Ф. Физика неинерциальных систем отсчета и квантовая механика / Т. Ф. Камалов. – М.: КД Либроком, 2017. – 116 c.
18. Карманов, М. В. Курс общей физики. Т.3. Квантовая оптика. Атомная физика. Физика твердого тела В 4-х тт Т: 3 / М. В. Карманов. – М.: КноРус, 2012. – 384 c.
19. Квасников, И. А. Термодинамика и статистическая физика. Т. 4. Квантовая статистика: Учебное пособие / И. А. Квасников. – М.: КомКнига, 2010. – 352 c.
20. Квасников, И. А. Термодинамика и статистическая физика: Т.4: Квантовая статистика / И. А. Квасников. – М.: Ленанд, 2017. – 352 c.
21. Квасников, И. А. Термодинамика и статистическая физика. Т. 4: Квантовая статистика / И. А. Квасников. – М.: КомКнига, 2014. – 352 c.
22. Квасников, И. А. Термодинамика и статистическая физика: Квантовая статистика / И. А. Квасников. – М.: КомКнига, 2010. – 352 c.
23. Кингсеп, А. С. Основы физики. Курс общ. физики в 2-х т. Том 2. Квантовая и статистическая физика: Учебник для вузов. / А. С. Кингсеп, Ю. М. Ципенюк. – М.: Физматлит, 2007. – 608 c.
24. Ландау, Л. Теоретическая физика В 10 тт. Т. 4. Квантовая электродинамика / Л. Ландау, Е. Лифшиц. – М.: Физматлит, 2006. – 720 c.
25. Ландау, Л. Д. Теоретическая физика: Учебное пособие для вузов в10т. Том 4 Квантовая электродинамика / Л. Д. Ландау, Е. М. Лифшиц. – М.: Физматлит, 2006. – 720 c.
26. Ландау, Л. Д. Теоретическая физика. В 10 т. Т. 3. Квантовая механика (нерелятивистская теория) / Л. Д. Ландау, Е. М. Лифшиц. – М.: Физматлит, 2016. – 800 c.
27. Ландау, Л. Д. Теоретическая физика в 10 томах. т.4. Квантовая электродинамика. / Л. Д. Ландау, Е. М. Лившиц. – М.: Физматлит, 2006. – 720 c.
28. Ландау, Л. Д. Теоретическая физика в 10 томах. т.3. Квантовая механика (нерелятивная теория) / Л. Д. Ландау, Е. М. Лившиц. – М.: Физматлит, 2016. – 800 c.
ИНФОРМАЦИОННО – ИЗМЕРИТЕЛЬНАЯ СИСТЕМА ДЛЯ ИССЛЕДОВАНИЯ ПРЕДВЕСТНИКОВ ЗЕМЛЕТРЯСЕНИЙ
Асатулла Урманович Максудов
Старший научный сотрудник Физико-технического института АН РУз
Физико-технический институт Академии наук Республики Узбекистан asaduz50@rambler.ru
Нурмамат Умаралиев
Кандидат технических наук, доцент кафедры «Электроники и приборостроения» факультета систем компьютерного проектирования Ферганского политехнического института
Ферганский политехнический институт, Фергана, Узбекистан
ORCID-0000-0001-9822-8115
nurmuhammad@bk.ru
Аннотация. В настоящее время прогноз землетрясений является одной из наиболее актуальных проблем. Сейсмические катастрофы, вызванные землетрясениями, не только наносят большой экономический ущерб, но и приводят к гибели многих людей.
Ключевые слова: предвестник, прогноз землетрясений, потоки нейтронов и заряженных частиц, измерения, мониторинг, информационно-измерительная система.
Annotation. Currently, earthquake forecasting is one of the most pressing problems. Seismic disasters caused by earthquakes not only cause great economic damage, but also lead to the death of many people.
Keywords: harbinger, earthquake forecast, neutron and charged particle fluxes, measurements, monitoring, information and measurement system.
Цель исследования
Изучения новых предвестников землетрясений для решения вопросов краткосрочного и среднесрочного прогнозирования праметров предстоящих землетрясений. Для достижения поставленной цели данной работе используется косвенный метод измерения контролируемых параметров, постоянное мониторинг исследуемых величин и статистические методы обработки данных, втом числе методы регрессионного анализа.
Предложены информационно-измерительная система для изучения корреляционной связи между землетрясениями и потоками нейтронов и заряженных частиц, исходящими из земной коры, а также метод калибровки этой информационно-измерительной системы.
Данной работе использован экпериментальный метод исследования. Предложена косвенная методика измерения параметров землетрясения, такие как магнитуда, координаты гипоцентра.
Приведены результаты предварительных экспериментов. Описаны информативные признаки, блогодаря наличие которых возможно предсказание параметров, предстоящих землетрясения. Определены минимального количество реализаций, необходимого для построения регрессионных моделей параметров землетрясений. Приведена также структурная схема частей информационно- измерительной системы, посредством которых проводились предварительные эксперименты. Описано методика калибровки всего информационно-измерительной системы.
Основные выводы. В ходе анализа результатов предварительных экспериментов, проведенных в разных времях в городах Ташкент и Фергане возникло предположение о наличие коррелляционной связи между параметрами землетрясения и потоков нейтронов и заряженной частиц, т.е. потоки нейтронов и заряженной частиц носит информативных признаков о предстоящих землетрясениях в ближающим будущем. Согласно этому предположению, можно их отнести к предвестникам землетрясений.
Предложена информационно-измерительная система, которая позволить глубокое изучение взаимосвязь между параметров предстоящего землетрясеня и потоков нейтронов и заряженных частиц путем непрерывного мониторинга их и последующей статистической обработки накопленных данных.
Определены условия прогноза всех параметров предстоящего землетрясеня, такие как гипоцентр, магнитуда и время предстоящих землетрясений.
Введение
В настоящее время прогноз землетрясений является одной из наиболее актуальных проблем. Сейсмические катастрофы, вызванные землетрясениями, не только наносят большой экономический ущерб, но и приводят к гибели многих людей.
Основная трудность прогнозирования землетрясений заключается в том, что не разработана модель землетрясения. На практике не существует надежного метода и устройства, которые могли бы предсказать его местоположение, время, энергию или интенсивность, которые могли бы удовлетворить практические требования как по точности, так и по скорости. Однако эти требования делятся не только по уровню знаний о землетрясениях, но и на прогнозы для конкретных целей, долгосрочные прогнозы или краткосрочные прогнозы в зависимости от разных типов практических целей. На данный момент актуален краткосрочный прогноз. Это основа для четкого предупреждения о надвигающейся катастрофе и принятия срочных мер по уменьшению ущерба от землетрясения. В данной статье представлена информация об устройстве и информационной системе, предназначенной для измерения параметров физического процесса, которые могут служить для краткосрочного прогнозирования.
В патенте Узбекистана на полезную модель [1] предложено измерительное устройство для краткосрочного прогнозирования. В этом устройстве поступающие из-под земли заряженные частицы и потоки нейтронов воздействуя на сцинциляционных детекторов, порождают оптические импулсы, которые преобразуется в электрические импульсы с помощью фотоэлектронных умножителей, прикрепленных сцинтилляционным детекторам (рис. 1). Таким образом это устройство позволяет измерять поток нейтронов и заряженных частиц, поступающих из-под земли. Не смотря на ничтожность величины потоков, характер изменения вероятно носить информацию о главном первопричиние их возникновения. Непрерывный мониторинг величин потоков позволить проведение корреляционного анализа между ними и между параметрами землетрясений. На основе корреляционного анализа могут быть созданы точные методы прогнозирования приближающего землетрясения.
Рис.1. Устройство для измерения потоков нейтронов и заряженных чатиц:
а-аксонометрический вид; b-вид спереди в разрезе; уголь α=450;
1— центральные сцинтилляционные детекторы; 2-ФЭУ-84;
3-детекторы направления, 4-ФЭУ-125; 5-углеродные поглотители;
6-нейтронные счетчики.
Для такого корреляционного анализа необходимы результаты весьма масштабных измерительных работ. То есть необходимо постоянно контролировать значения потоков, получаемых устройством, и записывать их в соответствующую информационную базу. Кроме того, для исследования зависимости этих токов от расстояния необходимо не менее трех устройств и размещать их в виде треугольников на расстоянии не менее 200 км друг от друга в сейсмически активных зонах.
Параметры землетрясения – магнитуда, время, координаты гипоцентра, заряженные частицы и потоки нейтронов от предлагаемых для прогноза устройств должны быть одновременно зафиксированы в одной информационной базе в хронологическом порядке.
Кроме того, параметры всех землетрясений происходивщие вовремя мониторингга нейтронных потоков и заряженных частиц такие как – время, магнитуда и координаты гипоцентра – должны быть включены в информационную базу в хронологическом порядке.
Для построения адекватных регрессионных модели прогноза параметров предстоящего землетрясения количество экспериментов должен быт неменее количество соответствующих датчиков комплекса. Например, для построения регрессионных модели прогноза параметров гипоцентра, исходя из количество датчиков направления, количество экспериментов должно быть неменее 24, а для прогноза магнитуды количество экспериментов должно быть не менее 3.
Этот процесс является режимом «обучения» предлагаемой измерительно-информационной системы. Собрав достаточное количество статистических данных в этом режиме, можно будет построить математическую модель, прогнозирующую параметры предстоящего землетрясения, используя регрессионный анализ результатов измерений. Предлагаемая измерительно-информационная система тогда станет комплексом, прогнозирующим параметров возможного землетрясения. Как и любая SMART-система, эта система всегда работает в режиме «прогноз-коррекция», при этом точность прогнозирования параметров землетрясений повышается.
Предлагаемая измерительно-информационная система построена на основе современных средств передачи информации и информационно-коммуникационных технологий. Ниже представлена структурная схема одного канала измерительного устройства измерительно-информационной системы:
Рис 2. Структурная схема передачи информации от измерительного устройства
Здесь:
• Device to be monitored – измерительное устройство, показанное на рисунке1.
• UART- universal asynchronous receiver/transmitter – универсальный асинхронный приемо – передатчик;
• Microcontroller – микроконтроллер с аналого-цифровым преобразователем;
• SPI – последовательный интерфейс передачи информации;
• EtherSield – модуль Ethernet;
• Hardware – набор программируемых измерительных устройств.
Рис. 3. Структурная схема системы
Здесь:
• Аппаратное обеспечение – технические средства системы, установленные в городах Фергана, Ташкент, Самарканд;
• Веб-сервер – это сервер приложений, который собирает и обрабатывает информацию.
В целях реализации предложенной информационно-измерительной системы в городах Фергана, Ташкент и Самарканд установлены три «Програмно – аппаратный измерительный комплекс». Результаты измерений, полученные с этих комплексов, вносятся в информационную базу через приложения веб-сервера на сайте pribori.uz. На рисунке 3 показана структурная схема системы.
Рис.– 4. Интерфейс для визуализации данных системы
На рисунке 4 ниже показан интерфейс визуализации данных системы.
Выводы
В ходе анализа результатов предварительных экспериментов, проведенных в разных времях в городах Ташкент и Фергане возникло предположение о наличие коррелляционной связи между параметрами землетрясения и потоков нейтронов и заряженной частиц, т.е. потоки нейтронов и заряженной частиц носит информативных признаков о предстоящих землетрясениях в ближающим будущем. Согласно этому предположению, можно их отнести к предвестникам землетрясений.
Предложеная информационно-измерительная система позволить глубокое изучение взаимосвязь между параметров предстоящего землетрясения и потоков нейтронов и заряженных частиц.
Определены условия прогноза всех параметров предстоящего землетрясеня, такие как гипоцентр, магнитуда и время предстоящих землетрясений.
Литература
1. A. U. Maksudov, M. A. Zufarov, «Predvaritelnye dannye registratsii predvestnikov zemletryaseniya modernizirovannoi ustanovkoi», Comp. nanotechnol., 2017, no. 3, 33—35
2. Регрессионные модели для прогнозирования землетрясений. Рахимов Р. Х., Умаралиев Н., Джалилов М. Л., Максудов А. У. Computational nanotechnology 2018, no. 2, 40—42