Тем не менее разработанная технология означает, что в настоящее время появилась возможность синтезировать алмазы, практически неотличимые от природных, из любого углеродсодержащего материала. Конечно, отличить природные алмазы, сформировавшиеся в кимберлитовых трубках, от алмазов, синтезированных, скажем, из наших волос, можно с помощью специального оборудования (например, определив их изотопный состав), но принципиальное значение такая возможность представляет только для алмазов, поступающих на рынок ювелирных изделий (природные алмазы дороже синтетических) – химические и физические свойства синтетических алмазов полностью идентичны свойствам природных камней.
С точки зрения химика или физика, описывая физические, химические и электронные свойства алмазов, мы рискуем слишком часто использовать превосходную форму сравнения. До настоящего времени алмаз является самым твёрдым материалом, известным человеку, и одним из самых химически устойчивых веществ – он выдерживает воздействие самых сильных кислот. У алмаза также наиболее высокая теплопроводность из известных материалов, он легко рассеивает тепло, поэтому алмаз всегда прохладен на ощупь. Благодаря распределению электронов алмаз можно считать хрестоматийным примером диэлектрика, и опять же благодаря своему электронному строению алмаз – твердый материал с идеальной пропускаемостью электромагнитного излучения в широкой области спектра. Все эти свойства делают алмазы лучшими друзьями не только девушек, но и учёных. Твердость и химическая стойкость алмаза позволяют применять его для изготовления защитных покрытий, устойчивых к истиранию, химической коррозии и радиационному повреждению. Высокая теплопроводность и диэлектрические свойства идеально подходят для изготовления электроники. Прозрачность алмаза позволяет делать из него оптические устройства, а биологическую совместимость алмаза можно использовать, изготавливая покрытия для имплантов. Эти свойства алмазов известны несколько веков, почему же случаи практического применения алмазов достаточно редки? Причина этому в том, что размеры природных алмазов, равно как и алмазов синтетических, тех, которые получают при высоких давлениях и высоких температурах, ограниченны и обычно не превышают нескольких миллиметров, и их можно резать и формовать только вдоль определённых граней. Сложности с обработкой алмазов не дают применять их в большинстве областей, в которых их можно было бы применить.
Около десятилетия назад появилось решение, позволяющее расширить возможности применения алмазов – был разработан новый способ их синтеза при низком давлении с помощью метода химического осаждения из газовой фазы. Для этого газовую смесь, состоящую из 99% водорода и 1% метана, пропускают над нитью накала, в результате чего происходит термическая активация компонентов газовой смеси, и в ней образуются реакционноспособные радикалы водорода и метильные радикалы, реакции которых приводят к тому, что газ, осаждаясь на твердой охлажденной подложке, формирует на ней тонкую плёнку из алмаза. Первоначально образуется углеродная плёнка, состоящая из графита и алмаза, но в условиях реакции отложения графит разрушается и остается только алмаз. Формирующиеся алмазные плёнки поликристаллические, они состоят из кристаллитов алмаза микронного размера. Несмотря на непривлекательный внешний вид, такие пленки можно осадить на поверхности, которые отличаются друг от друга и размером, и материалом, и формой, что, очевидно, увеличивает шансы практического применения алмазов.
Конечно, для полноценного применения алмазных плёнок, полученных с помощью химического осаждения паров, ещё необходимо выяснить, какие химические процессы протекают (и протекают ли) там, где алмазная плёнка контактирует с поверхностью, на которую её нанесли, а также уточнить наиболее оптимальный способ применения плёнок – алмазные плёнки предоставят химикам, физикам, специалистам по материаловедению и инженерам многие годы работы. Однако эти перспективы уже сейчас позволяют говорить, что алмазы собираются завести гораздо более широкий круг друзей, чем у них был до недавнего времени.
7. Азот
Достаточно часто в блогах, статьях и даже школьных планах поурочного планирования со ссылкой на Большую Советскую энциклопедию 1952 года приводится цитата, сравнивающая «социалистический» и «капиталистический» азот. Действительно, в соответствующей словарной статье такое противопоставление есть, но, справедливости ради, её авторы не придумали это сравнение сами, а процитировали лозунг, появившийся лет за двадцать до издания энциклопедии.
Полностью этот энциклопедический пассаж, конечно, не лишен идеологизированности, но звучит немного более мягко: «Царская Россия азотной промышленности совершенно не имела. Азотная промышленность в Советском Союзе была создана в годы первых сталинских пятилеток; к ней в полной мере относятся слова И. В. Сталина, сказанные в 1933: “У нас не было серьезной и современной химической промышленности. У нас она есть теперь” (Сталин, Вопросы ленинизма, 11-е изд., стр. 373). <…> В противоположность капиталистическим странам, где азотная промышленность работает в первую очередь для нужд войны, в СССР азотная промышленность имеет своей целью удовлетворить возрастающий спрос социалистического сельского хозяйства на азотные удобрения. “Азот в сложении с капитализмом – это война, разрушение, смерть. Азот в сложении с социализмом – это высокий урожай, высокая производительность труда, высокий материальный и культурный уровень трудящихся” (из передовой газ. «Правда», 1932, 25 апреля, №115)». В действительности же азот – как двуликий Янус: независимо от формы государства и его строя соединения азота готовы нести жизнь, удобряя поля, и сеять смерть, входя в состав взрывчатых веществ.
Несмотря на то, что воздух вокруг нас примерно на 80% состоит из азота, открывать азот человечеству пришлось долго – до азота алхимики и химики не только узнали о всех его «соседях» по Периодической системе – фосфоре, мышьяке, сурьме и висмуте, но и начали активно использовать их соединения. С другой стороны, все элементы из группы азота, кроме самого азота, твердые, а то, что твердые вещества «земли» не были единым элементом, стало известно уже даже во времена алхимии. А вот осознания того, что воздух не является единым элементом, пришлось подождать до эпохи «пневматической химии» – этапа развития химии, на котором был определен и состав воздуха, и получены и изучены другие газы.
У истоков открытия азота стоял Генри Кавендиш, который изучал «связанный» или «мефитический воздух», впервые полученный шотландским химиком Джозефом Блэком в 1750-х годах, – углекислый газ. «Связанным» его называли благодаря получению – обработке кислотой некоторых минералов, например известняка, из которого он высвобождался. «Мефитическим», то есть ядовитым воздухом, углекислый газ был назван по той причине, что он не поддерживал дыхание лабораторных животных, быстро убивая их. После ряда экспериментов Кавендиш посчитал, что получил другую форму ядовитого воздуха, – он обнаружил, что газ, остающийся после горения свечи в закрытом объёме, тоже смертелен для животных (ни азот, ни появившийся в результате горения углекислый газ дыхание не поддерживают). Однако после серии экспериментов Кавендиш понял, что его «мефитический воздух» – смесь. При пропускании газовой смеси, получившейся в ходе экспериментов Кавендиша, через раствор щелочи или негашёную известь часть газа поглощалась, причем из твердых продуктов реакции действием кислоты можно было выделить тот же «мефитический воздух», который описывал Блэк (об этом можно было судить по плотности газа). Часть же газа щелочью не поглощалась, образуя весьма инертный и не поддерживающий дыхание «воздух», плотность которого была чуть-чуть меньше, чем атмосферного воздуха, – это и был азот (молекулярная масса азота N2 равна 28, молекулярная масса атмосферного воздуха равна 29). Кавендиш не опубликовал свои результаты, а сообщил о них в письме коллеге Джозефу Пристли, одному из первооткрывателей кислорода. В конечном итоге первооткрывателем азота можно считать шотландского химика Даниэля Резерфорда (дяди сэра Вальтера Скотта, автора рыцарских и исторических романов). В 1772 году Резерфорд защитил магистерскую диссертацию «О связанном или мефитическом воздухе», в которой расписал основные свойства азота (инертное вещество, не реагирует со щелочами, не поддерживает горения, непригоден для дыхания).
Название «азот», происходящее от древнегреческого «безжизненный», этому элементу в 1787 году дал занимавшийся в то время упорядочением химической номенклатуры Антуан Лавуазье, опираясь все на те же свойства, что азот, дескать, воздух испорченный, дыхание не поддерживающий и быстро убивающий любого, кто его вдохнёт. Спустя некоторое время оказалось, что такие свойства можно приписать любому газу, кроме разве что кислорода, длительное вдыхание которого, впрочем, тоже небезопасно для организма. Ну а вскоре после того, как стало ясно, что азот не такой уж и «безжизненный» и входит в состав молекул жизни – белков, нуклеиновых кислот, номенклатурное латинское название азота и название азота на ряде языков сменилось на “nitrogenium” – «рождающий селитры». В основу этого названия легли наблюдения всё того же Генри Кавендиша, описавшего, что, если подействовать на воздух электрическим разрядом, а потом пропустить его через раствор щелочи, получаются селитры (nitre). В итоге азот остался одним из немногих элементов, название которого в разных языках строится по разным принципам. В русском, французском, итальянском и турецком языках азот остался азотом, в английском и испанском название строится как производное от официального латинского nitrogenium, по-немецки этот элемент называется Stickstoff («удушающее вещество»), что-то похожее есть и в некоторых славянских языках (например, хорватское dušik).
Приручить азот, точнее использовать в качестве сырья для производства азотсодержащих удобрений и азотной кислоты, удалось только в ХХ веке. «На бумаге» задача решалась легко – заставляем азот воздуха реагировать с кислородом воздуха же, получаем оксиды азота, которые превращаем в кислоту или нитраты, но на практике ходить приходилось по огромным и крутым «оврагам» – заставить азот реагировать с кислородом удавалось только в лаборатории и только при температуре не менее 3000 °С, что, естественно, не могло стать основой для промышленного производства. Причина столь большой инертности азота – в чрезвычайно прочной тройной связи между атомами в двухатомной молекуле N2 (до сих пор в лабораторной практике для создания инертной атмосферы можно использовать не только инертный газ аргон, но и азот).
В начале 1900-х годов химические технологи первоначально пошли путём Кавендиша и заменили нагрев электрическим разрядом. В 1903 году норвежские ученые Кристиан Олаф Бернхард Биркеланд и Самуэль Эйде сконструировали электрическую печь для промышленного получения азотной кислоты и нитрата кальция (который с тех пор стал называться «норвежской селитрой») из воздуха. Метод, получивший название «метода Биркеланда – Эйде», требует больших затрат и может применяться только при условии наличия дешёвой электроэнергии (например, приливной, геотермальной и т.д.) и в настоящее время практически не имеет промышленного значения.
Разработать же применяющийся сейчас способ связывания атмосферного азота удалось немецким ученым Фрицу Габеру и Карлу Бошу, которые вместо того, чтобы и дальше штурмовать идущую с поглощением реакцию горения азота в кислороде, нашли обходный манёвр. Этим маневром стала протекающая с выделением теплоты равновесная реакция азота с водородом, приводящая к образованию аммиака, который затем и сжигают с образованием оксидов азота. Процесс связывания азота по Габеру – Бошу дешевле, чем метод Биркеланда – Эйде, но и в этом случае расходы энергии колоссальны – на связывание азота в аммиак ежегодно тратится около 1% всей энергии, вырабатываемой человечеством. Большей частью все эти кило- и мегаватты тратятся на сжатие и нагрев азото-водородной смеси, необходимой для того, чтобы направить равновесие туда, куда надо. В 1918 году Фриц Габер получил Нобелевскую премию по химии, что тут же вызвало негодование многих учёных, особенно являющихся гражданами стран, воевавших с Германией во время Великой войны. Причина этого в том, что Габер не только создал условия для ведения современного сельского хозяйства с химическими удобрениями, но и стал автором концепции химической войны – первая газобалонная атака кайзеровской армии на франко-бельгийские позиции 22 апреля 1915 года проходила под непосредственным руководством будущего Нобелевского лауреата.
Полученный по методу Габера аммиак может стать аммиачной селитрой, которую можно применять и как удобрение, и как материал для бомб-самоделок – связывание азота действительно может использоваться двояко. А вот процесс, в результате которого молекулярный азот выделяется, используется для спасения жизней. В системе, управляющей подушками безопасности в автомобиле, имеются емкости с азидом натрия (NaN3 – восстановитель) и нитратом калия (KNO3 – окислитель). При аварии эти вещества смешиваются и вступают в химическую реакцию, в результате которой образуется большой объем азота, надувающего подушку безопасности, тем самым сохраняя жизнь и здоровье тем, кто находится в автомобиле.
8. Кислород
Первая революция на нашей планете началась очень давно, а её плодами мы пользуемся до сих пор, точнее, она создала нас с вами.
На рубеже архея и протерозоя 2,2–2,6 миллиарда лет назад произошло глобальное изменение состава атмосферы Земли, которое называют «Великим кислородным событием» или «Кислородной революцией». 2,8 миллиарда лет назад появились цианобактерии, которые освоили новый способ преобразования солнечной энергии в химическую – активируемую солнечным светом комбинацию углекислого газа и воды, побочным продуктом которой был кислород (фотосинтез, то есть превращение солнечной энергии в химическую, существовал и ранее, но в фотосинтетических процессах, свойственных более эволюционно древним организмам, кислород не выделялся). Выделяющийся при фотосинтезе цианобактерий кислород, токсичный для многих организмов той эпохи, стал менять ландшафт нашей планеты – окислять восстанавливающие компоненты атмосферы и земной коры. В какой-то момент содержание кислорода в атмосфере резко возросло, газовая оболочка Земли превратилась из восстанавливающей в окисляющую, простейшие организмы, для которых кислород был ядом, вымерли или оказались в бескислородных «резервациях» биосферы – анаэробных карманах. Существование больших количеств молекулярного кислорода в атмосфере Земли привело к образованию озонового слоя, позволившего живым организмам существенно расширить области своего обитания, и привело к распространению дающего большее количество энергии кислородного дыхания. Началась эра кислорододышащих или аэробных форм жизни, эволюция которых привела к появлению в том числе и человека.
Сейчас наша атмосфера содержит около 21% кислорода (по объёму) или 23% (по массе), но кислород не только в воздухе, которым мы дышим. Если говорить о кислороде как о химическом элементе, а не о молекуле О2
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги