On three other occasions eight leaves were strongly excited with albumen moistened with saliva; they were then cut off, and allowed to soak for several hours or for a whole day in a few drops of glycerine. Some of this extract was added to a little hydrochloric acid of various strengths (generally one to 400 of water), and minute cubes of albumen were placed in the mixture.21 In two of these trials the cubes were not in the least acted on; but in the third the experiment was successful. For in a vessel containing two cubes, both were reduced in size in 3 hrs.; and after 24 hrs. mere streaks of undissolved albumen were left. In a second vessel, containing two minute ragged bits of albumen, both were likewise reduced in size in 3 hrs., and after 24 hrs. completely disappeared. I then added a little weak hydrochloric acid to both vessels, and placed fresh cubes of albumen in them; but these were not acted on. This latter fact is intelligible according to the high authority of Schiff,22 who has demonstrated, as he believes, in opposition to the view held by some physiologists, that a certain small amount of pepsin is destroyed during the act of digestion. So that if my solution contained, as is probable, an extremely small amount of the ferment, this would have been consumed by the dissolution of the cubes of albumen first given; none being left when the hydrochloric acid was added. The destruction of the ferment during the process of digestion, or its absorption after the albumen had been converted into a peptone, will also account for only one out of the three latter sets of experiments having been successful.
Digestion of Roast Meat. – Cubes of about 1/20 of an inch (1.27 mm.) of moderately roasted meat were placed on five leaves which became in 12 hrs. closely inflected. After 48 hrs. I gently opened one leaf, and the meat now consisted of a minute central sphere, partially digested and surrounded by a thick envelope of transparent viscid fluid. The whole, without being much disturbed, was removed and placed under the microscope. In the central part the transverse striae on the muscular fibres were quite distinct; and it was interesting to observe how gradually they disappeared, when the same fibre was traced into the surrounding fluid. They disappeared by the striae being replaced by transverse lines formed of excessively minute dark points, which towards the exterior could be seen only under a very high power; and ultimately these points were lost. When I made these observations, I had not read Schiff's account23 of the digestion of meat by gastric juice, and I did not understand the meaning of the dark points. But this is explained in the following statement, and we further see how closely similar is the process of digestion by gastric juice and by the secretion of Drosera.
["On a dit le suc gastrique faisait perdre la fibre musculaire ses stries transversales. Ainsi nonce, cette proposition pourrait donner lieu une quivoque, car ce qui se perd, ce n'est que l'aspect extrieur de la striature et non les lments anatomiques qui la composent. On sait que les stries qui donnent un aspect si caractristique la fibre musculaire, sont le rsultat de la juxtaposition et du paralllisme des corpuscules lmentaires, placs, distances gales, dans l'intrieur des fibrilles contigus. Or, ds que le tissu connectif qui relie entre elles les fibrilles lmentaires vient se gonfler et se dissoudre, et que les fibrilles elles-mmes se dissocient, ce paralllisme est dtruit et avec lui l'aspect, le phnomne optique des stries. Si, aprs la dsagrgation des fibres, on examine au microscope les fibrilles lmentaires, on distingue encore trs-nettement leur intrieur les corpuscules, et on continue les voir, de plus en plus ples, jusqu'au moment o les fibrilles elles-mmes se liqufient et disparaissent dans le suc gastrique. Ce qui constitue la striature, proprement parler, n'est donc pas dtruit, avant la liqufaction de la fibre charnue elle-mme."]
In the viscid fluid surrounding the central sphere of undigested meat there were globules of fat and little bits of fibro-elastic tissue; neither of which were in the least digested. There were also little free parallelograms of yellowish, highly translucent matter. Schiff, in speaking of the digestion of meat by gastric juice, alludes to such parallelograms, and says: —
["Le gonflement par lequel commence la digestion de la viande, rsulte de l'action du suc gastrique acide sur le tissu connectif qui se dissout d'abord, et qui, par sa liqufaction, dsagrge les fibrilles. Celles-ci se dissolvent ensuite en grande partie, mais, avant de passer l'tat liquide, elles tendent se briser en petits fragments transversaux. Les 'sarcous elements' de Bowman, qui ne sont autre chose que les produits de cette division transversale des fibrilles lmentaires, peuvent tre prpars et isols l'aide du suc gastrique, pourvu qu'on n'attend pas jusqu' la liqufaction complte du muscle."]
After an interval of 72 hrs., from the time when the five cubes were placed on the leaves, I opened the four remaining ones. On two nothing could be seen but little masses of transparent viscid fluid; but when these were examined under a high power, fat-globules, bits of fibro-elastic tissue, and some few parallelograms of sarcous matter, could be distinguished, but not a vestige of transverse striae. On the other two leaves there were minute spheres of only partially digested meat in the centre of much transparent fluid.
Fibrin. – Bits of fibrin were left in water during four days, whilst the following experiments were tried, but they were not in the least acted on. The fibrin which I first used was not pure, and included dark particles: it had either not been well prepared or had subsequently undergone some change. Thin portions, about 1/10 of an inch square, were placed on several leaves, and though the fibrin was soon liquefied, the whole was never dissolved. Smaller particles were then placed on four leaves, and minute drops of hydrochloric acid (one part to 437 of water) were added; this seemed to hasten the process of digestion, for on one leaf all was liquified and absorbed after 20 hrs.; but on the three other leaves some undissolved residue was left after 48 hrs. It is remarkable that in all the above and following experiments, as well as when much larger bits of fibrin were used, the leaves were very little excited; and it was sometimes necessary to add a little saliva to induce complete inflection. The leaves, moreover, began to re-expand after only 48 hrs., whereas they would have remained inflected for a much longer time had insects, meat, cartilage, albumen, &c., been placed on them.
I then tried some pure white fibrin, sent me by Dr. Burdon Sanderson.
[Experiment 1. – Two particles, barely 1/20 of an inch (1.27 mm.) square, were placed on opposite sides of the same leaf. One of these did not excite the surrounding tentacles, and the gland on which it rested soon dried. The other particle caused a few of the short adjoining tentacles to be inflected, the more distant ones not being affected. After 24 hrs. both were almost, and after 72 hrs. completely, dissolved.
Experiment 2. – The same experiment with the same result, only one of the two bits of fibrin exciting the short surrounding tentacles. This bit was so slowly acted on that after a day I pushed it on to some fresh glands. In three days from the time when it was first placed on the leaf it was completely dissolved.
Experiment 3. – Bits of fibrin of about the same size as before were placed on the discs of two leaves; these caused very little inflection in 23 hrs., but after 48 hrs. both were well clasped by the surrounding short tentacles, and after an additional 24 hrs. were completely dissolved. On the disc of one of these leaves much clear acid fluid was left.
Experiment 4. – Similar bits of fibrin were placed on the discs of two leaves; as after 2 hrs. the glands seemed rather dry, they were freely moistened with saliva; this soon caused strong inflection both of the tentacles and blades, with copious secretion from the glands. In 18 hrs. the fibrin was completely liquefied, but undigested atoms still floated in the liquid; these, however, disappeared in under two additional days.]
From these experiments it is clear that the secretion completely dissolves pure fibrin. The rate of dissolution is rather slow; but this depends merely on this substance not exciting the leaves sufficiently, so that only the immediately adjoining tentacles are inflected, and the supply of secretion is small.
Syntonin. – This substance, extracted from muscle, was kindly prepared for me by Dr. Moore. Very differently from fibrin, it acts quickly and energetically. Small portions placed on the discs of three leaves caused their tentacles and blades to be strongly inflected within 8 hrs.; but no further observations were made. It is probably due to the presence of this substance that raw meat is too powerful a stimulant, often injuring or even killing the leaves.
Areolar Tissue. – Small portions of this tissue from a sheep were placed on the discs of three leaves; these became moderately well inflected in 24 hrs., but began to re-expand after 48 hrs., and were fully re-expanded in 72 hrs., always reckoning from the time when the bits were first given. This substance, therefore, like fibrin, excites the leaves for only a short time. The residue left on the leaves, after they were fully re-expanded, was examined under a high power and found much altered, but, owing to the presence of a quantity of elastic tissue, which is never acted on, could hardly be said to be in a liquefied condition.
Some areolar tissue free from elastic tissue was next procured from the visceral cavity of a toad, and moderately sized, as well as very small, bits were placed on five leaves. After 24 hrs. two of the bits were completely liquefied; two others were rendered transparent, but not quite liquefied; whilst the fifth was but little affected. Several glands on the three latter leaves were now moistened with a little saliva, which soon caused much inflection and secretion, with the result that in the course of 12 additional hrs. one leaf alone showed a remnant of undigested tissue. On the discs of the four other leaves (to one of which a rather large bit had been given) nothing was left except some transparent viscid fluid. I may add that some of this tissue included points of black pigment, and these were not at all affected. As a control experiment, small portions of this tissue were left in water and on wet moss for the same length of time, and remained white and opaque. From these facts it is clear that areolar tissue is easily and quickly digested by the secretion; but that it does not greatly excite the leaves.
Cartilage. – Three cubes (1/20 of an inch or 1.27 mm.) of white, translucent, extremely tough cartilage were cut from the end of a slightly roasted leg-bone of a sheep. These were placed on three leaves, borne by poor, small plants in my greenhouse during November; and it seemed in the highest degree improbable that so hard a substance would be digested under such unfavourable circumstances. Nevertheless, after 48 hrs., the cubes were largely dissolved and converted into minute spheres, surrounded by transparent, very acid fluid. Two of these spheres were completely softened to their centres; whilst the third still contained a very small irregularly shaped core of solid cartilage. Their surfaces were seen under the microscope to be curiously marked by prominent ridges, showing that the cartilage had been unequally corroded by the secretion. I need hardly say that cubes of the same cartilage, kept in water for the same length of time, were not in the least affected.
During a more favourable season, moderately sized bits of the skinned ear of a cat, which includes cartilage, areolar and elastic tissue, were placed on three leaves. Some of the glands were touched with saliva, which caused prompt inflection. Two of the leaves began to re-expand after three days, and the third on the fifth day. The fluid residue left on their discs was now examined, and consisted in one case of perfectly transparent, viscid matter; in the other two cases, it contained some elastic tissue and apparently remnants of half digested areolar tissue.
Fibro-cartilage (from between the vertebrae of the tail of a sheep). Moderately sized and small bits (the latter about 1/20 of an inch) were placed on nine leaves. Some of these were well and some very little inflected. In the latter case the bits were dragged over the discs, so that they were well bedaubed with the secretion, and many glands thus irritated. All the leaves re-expanded after only two days; so that they were but little excited by this substance. The bits were not liquefied, but were certainly in an altered condition, being swollen, much more transparent, and so tender as to disintegrate very easily. My son Francis prepared some artificial gastric juice, which was proved efficient by quickly dissolving fibrin, and suspended portions of the fibro-cartilage in it. These swelled and became hyaline, exactly like those exposed to the secretion of Drosera, but were not dissolved. This result surprised me much, as two physiologists were of opinion that fibro-cartilage would be easily digested by gastric juice. I therefore asked Dr. Klein to examine the specimens; and he reports that the two which had been subjected to artificial gastric juice were "in that state of digestion in which we find connective tissue when treated with an acid, viz. swollen, more or less hyaline, the fibrillar bundles having become homogeneous and lost their fibrillar structure." In the specimens which had been left on the leaves of Drosera, until they re-expanded, "parts were altered, though only slightly so, in the same manner as those subjected to the gastric juice as they had become more transparent, almost hyaline, with the fibrillation of the bundles indistinct." Fibro-cartilage is therefore acted on in nearly the same manner by gastric juice and by the secretion of Drosera.
Bone. – Small smooth bits of the dried hyoidal bone of a fowl moistened with saliva were placed on two leaves, and a similarly moistened splinter of an extremely hard, broiled mutton-chop bone on a third leaf. These leaves soon became strongly inflected, and remained so for an unusual length of time; namely, one leaf for ten and the other two for nine days. The bits of bone were surrounded all the time by acid secretion. When examined under a weak power, they were found quite softened, so that they were readily penetrated by a blunt needle, torn into fibres, or compressed. Dr. Klein was so kind as to make sections of both bones and examine them. He informs me that both presented the normal appearance of decalcified bone, with traces of the earthy salts occasionally left. The corpuscles with their processes were very distinct in most parts; but in some parts, especially near the periphery of the hyoidal bone, none could be seen. Other parts again appeared amorphous, with even the longitudinal striation of bone not distinguishable. This amorphous structure, as Dr. Klein thinks, may be the result either of the incipient digestion of the fibrous basis or of all the animal matter having been removed, the corpuscles being thus rendered invisible. A hard, brittle, yellowish substance occupied the position of the medulla in the fragments of the hyoidal bone.
As the angles and little projections of the fibrous basis were not in the least rounded or corroded, two of the bits were placed on fresh leaves. These by the next morning were closely inflected, and remained so, – the one for six and the other for seven days, – therefore for not so long a time as on the first occasion, but for a much longer time than ever occurs with leaves inflected over inorganic or even over many organic bodies. The secretion during the whole time coloured litmus paper of a bright red; but this may have been due to the presence of the acid super-phosphate of lime. When the leaves re-expanded, the angles and projections of the fibrous basis were as sharp as ever. I therefore concluded, falsely as we shall presently see, that the secretion cannot touch the fibrous basis of bone. The more probable explanation is that the acid was all consumed in decomposing the phosphate of lime which still remained; so that none was left in a free state to act in conjunction with the ferment on the fibrous basis.
Enamel and Dentine. – As the secretion decalcified ordinary bone, I determined to try whether it would act on enamel and dentine, but did not expect that it would succeed with so hard a substance as enamel. Dr. Klein gave me some thin transverse slices of the canine tooth of a dog; small angular fragments of which were placed on four leaves; and these were examined each succeeding day at the same hour. The results are, I think, worth giving in detail.]
[Experiment 1. – May 1st, fragment placed on leaf; 3rd, tentacles but little inflected, so a little saliva was added; 6th, as the tentacles were not strongly inflected, the fragment was transferred to another leaf, which acted at first slowly, but by the 9th closely embraced it. On the 11th this second leaf began to re-expand; the fragment was manifestly softened, and Dr. Klein reports, "a great deal of enamel and the greater part of the dentine decalcified."
Experiment 2. – May 1st, fragment placed on leaf; 2nd, tentacles fairly well inflected, with much secretion on the disc, and remained so until the 7th, when the leaf re-expanded. The fragment was now transferred to a fresh leaf, which next day (8th) was inflected in the strongest manner, and thus remained until the 11th, when it re-expanded. Dr. Klein reports, "a great deal of enamel and the greater part of the dentine decalcified."
Experiment 3. – May 1st, fragment moistened with saliva and placed on a leaf, which remained well inflected until 5th, when it re-expanded. The enamel was not at all, and the dentine only slightly, softened. The fragment was now transferred to a fresh leaf, which next morning (6th) was strongly inflected, and remained so until the 11th. The enamel and dentine both now somewhat softened; and Dr. Klein reports, "less than half the enamel, but the greater part of the dentine decalcified."
Experiment 4. – May 1st, a minute and thin bit of dentine, moistened with saliva, was placed on a leaf, which was soon inflected, and re-expanded on the 5th. The dentine had become as flexible as thin paper. It was then transferred to a fresh leaf, which next morning (6th) was strongly inflected, and reopened on the 10th. The decalcified dentine was now so tender that it was torn into shreds merely by the force of the re-expanding tentacles.]
From these experiments it appears that enamel is attacked by the secretion with more difficulty than dentine, as might have been expected from its extreme hardness; and both with more difficulty than ordinary bone. After the process of dissolution has once commenced, it is carried on with greater ease; this may be inferred from the leaves, to which the fragments were transferred, becoming in all four cases strongly inflected in the course of a single day; whereas the first set of leaves acted much less quickly and energetically. The angles or projections of the fibrous basis of the enamel and dentine (except, perhaps, in No. 4, which could not be well observed) were not in the least rounded; and Dr. Klein remarks that their microscopical structure was not altered. But this could not have been expected, as the decalcification was not complete in the three specimens which were carefully examined.
Fibrous Basis of Bone. – I at first concluded, as already stated, that the secretion could not digest this substance. I therefore asked Dr. Burdon Sanderson to try bone, enamel, and dentine, in artificial gastric juice, and he found that they were after a considerable time completely dissolved. Dr. Klein examined some of the small lamellae, into which part of the skull of a cat became broken up after about a week's immersion in the fluid, and he found that towards the edges the "matrix appeared rarefied, thus producing the appearance as if the canaliculi of the bone-corpuscles had become larger. Otherwise the corpuscles and their canaliculi were very distinct." So that with bone subjected to artificial gastric juice complete decalcification precedes the dissolution of the fibrous basis. Dr. Burdon Sanderson suggested to me that the failure of Drosera to digest the fibrous basis of bone, enamel, and dentine, might be due to the acid being consumed in the decomposition of the earthy salts, so that there was none left for the work of digestion. Accordingly, my son thoroughly decalcified the bone of a sheep with weak hydrochloric acid; and seven minute fragments of the fibrous basis were placed on so many leaves, four of the fragments being first damped with saliva to aid prompt inflection. All seven leaves became inflected, but only very moderately, in the course of a day. They quickly began to re-expand; five of them on the second day, and the other two on the third day. On all seven leaves the fibrous tissue was converted into perfectly transparent, viscid, more or less liquefied little masses. In the middle, however, of one, my son saw under a high power a few corpuscles, with traces of fibrillation in the surrounding transparent matter. From these facts it is clear that the leaves are very little excited by the fibrous basis of bone, but that the secretion easily and quickly liquefies it, if thoroughly decalcified. The glands which had remained in contact for two or three days with the viscid masses were not discoloured, and apparently had absorbed little of the liquefied tissue, or had been little affected by it.
Phosphate of Lime. – As we have seen that the tentacles of the first set of leaves remained clasped for nine or ten days over minute fragments of bone, and the tentacles of the second set for six or seven days over the same fragments, I was led to suppose that it was the phosphate of lime, and not any included animal matter, which caused such long continued inflection. It is at least certain from what has just been shown that this cannot have been due to the presence of the fibrous basis. With enamel and dentine (the former of which contains only 4 per cent. of organic matter) the tentacles of two successive sets of leaves remained inflected altogether for eleven days. In order to test my belief in the potency of phosphate of lime, I procured some from Prof. Frankland absolutely free of animal matter and of any acid. A small quantity moistened with water was placed on the discs of two leaves. One of these was only slightly affected; the other remained closely inflected for ten days, when a few of the tentacles began to re-expand, the rest being much injured or killed. I repeated the experiment, but moistened the phosphate with saliva to insure prompt inflection; one leaf remained inflected for six days (the little saliva used would not have acted for nearly so long a time) and then died; the other leaf tried to re-expand on the sixth day, but after nine days failed to do so, and likewise died. Although the quantity of phosphate given to the above four leaves was extremely small, much was left in every case undissolved. A larger quantity wetted with water was next placed on the discs of three leaves; and these became most strongly inflected in the course of 24 hrs. They never re-expanded; on the fourth day they looked sickly, and on the sixth were almost dead. Large drops of not very viscid fluid hung from their edges during the six days. This fluid was tested each day with litmus paper, but never coloured it; and this circumstance I do not understand, as the superphosphate of lime is acid. I suppose that some superphosphate must have been formed by the acid of the secretion acting on the phosphate, but that it was all absorbed and injured the leaves; the large drops which hung from their edges being an abnormal and dropsical secretion. Anyhow, it is manifest that the phosphate of lime is a most powerful stimulant. Even small doses are more or less poisonous, probably on the same principle that raw meat and other nutritious substances, given in excess, kill the leaves. Hence the conclusion, that the long continued inflection of the tentacles over fragments of bone, enamel, and dentine, is caused by the presence of phosphate of lime, and not of any included animal matter, is no doubt correct.
Gelatine. – I used pure gelatine in thin sheets given me by Prof. Hoffmann. For comparison, squares of the same size as those placed on the leaves were left close by on wet moss. These soon swelled, but retained their angles for three days; after five days they formed rounded, softened masses, but even on the eighth day a trace of gelatine could still be detected. Other squares were immersed in water, and these, though much swollen, retained their angles for six days. Squares of 1/10 of an inch (2.54 mm.), just moistened with water, were placed on two leaves; and after two or three days nothing was left on them but some acid viscid fluid, which in this and other cases never showed any tendency to regelatinise; so that the secretion must act on the gelatine differently to what water does, and apparently in the same manner as gastric juice.24 Four squares of the same size as before were then soaked for three days in water, and placed on large leaves; the gelatine was liquefied and rendered acid in two days, but did not excite much inflection. The leaves began to re-expand after four or five days, much viscid fluid being left on their discs, as if but little had been absorbed. One of these leaves, as soon as it re-expanded, caught a small fly, and after 24 hrs. was closely inflected, showing how much more potent than gelatine is the animal matter absorbed from an insect. Some larger pieces of gelatine, soaked for five days in water, were next placed on three leaves, but these did not become much inflected until the third day; nor was the gelatine completely liquefied until the fourth day. On this day one leaf began to re-expand; the second on the fifth; and third on the sixth. These several facts prove that gelatine is far from acting energetically on Drosera.