Но какое бы сильное впечатление ни производили на нас умозрительные рассуждения древних о природе, они имеют очень мало общего с современной физикой, и не только по существу, но и по методу и стилю. Прежде всего свои заключения древнегреческие философы основывали почти целиком на почве эстетики и на априорных предположениях, почти не пытаясь – или даже вообще не пытаясь – их как-то проверить. Мысль об этом просто не приходила им в голову. Поэтому их концепция «физики» и системы «законов», лежащей в основе всего сущего, ничем не напоминает современную научную теорию. Стивен Вайнберг в своей последней книге «Объяснить мир» утверждает, что с современной точки зрения древнегреческих мыслителей лучше представлять не как физиков, ученых или даже философов, но как поэтов – настолько фундаментально их методология отличается от того, что сегодня понимается под научной деятельностью. Конечно, и современные физики находят красоту в своих теориях, и большинство из них тоже руководствуется в исследованиях эстетическими соображениями, но эта сторона дела не заменяет процесса проверки правильности теорий посредством экспериментов и наблюдений – именно они в конечном счете и являются ключевым фактором научной революции.
И тем не менее стремление Платона к «математизации» мира оказало невероятно глубокое воздействие. И когда двадцать столетий спустя грянула современная научная революция, ее главные действующие лица вдохновлялись верой в платоновскую программу поиска скрытого порядка, лежащего в основе физического мира и выраженного на языке математических соотношений. «Великую книгу Природы, – писал Галилей, – могут читать только те, кто владеет языком, на котором она написана. И язык этот – математика»[12].
Исаак Ньютон, алхимик, мистик, сложная личность и один из сильнейших математиков, когда-либо живших на Земле, в концентрированном виде представил математический подход к натурфилософии в своих «Началах» – пожалуй, самой важной книге в истории науки. Тому, что Ньютон начал ее писать, способствовала его вынужденная изоляция во время карантина, связанного с эпидемией чумы в 1665 году. Занятия в Кембриджском университете прекратились, и Ньютон, новоиспеченный бакалавр, возвратился в Линкольншир, в окруженный яблоневым садом дом своей матери. Там он размышлял о математическом анализе, гравитации и движении, а еще разложил при помощи призмы белый свет на все цвета радуги. Но лишь в апреле 1686 года Ньютон представил Королевскому обществу для публикации свои «Математические начала натуральной философии», содержащие три закона движения и закон всемирного тяготения. Последний – возможно, самый знаменитый из всех законов природы – утверждает, что сила притяжения, действующая между двумя телами, пропорциональна массам этих тел и уменьшается как квадрат расстояния между ними.
В «Началах» Ньютон показал, что одни и те же универсальные принципы лежат в основе механизмов как мира горнего, так и окружающего нас несовершенного мира человеческого. Эта идея обозначила собой концептуальный и духовный разрыв с прошлым. Иногда говорят, что Ньютон объединил небеса и Землю. Вычислив при помощи горсти математических уравнений движения планет, он привел к общему знаменателю все предыдущие изобразительные описания Солнечной системы – и это означало переход от эры магии к тому, что стало современной физикой. Ньютоновский подход обеспечил формирование генеральной парадигмы, в которую вписалось все последовавшее за этим развитие физики. Древнегреческую «физику» современные физики почти не воспринимают; в ньютоновской физике они чувствуют себя как дома.
Повсеместно упоминаемый пример торжества законов Ньютона – открытие планеты Нептун в 1846 году. И до этого астрономы замечали, что небесный путь Урана немного отклоняется от орбиты, предсказанной на основе ньютоновского закона тяготения. Француз Урбан Леверье, пытаясь объяснить это упрямое расхождение, сделал смелое предположение, что оно вызвано неизвестной планетой, гораздо более далекой, чем Уран, чье гравитационное притяжение слабо, но заметно влияет на траекторию Урана. Применяя законы Ньютона, Леверье сумел предсказать, где именно неизвестная планета должна находиться на небе, чтобы ее присутствие объяснило искажения орбиты Урана, – конечно, при условии, что законы Ньютона верны. И действительно, астрономы вскоре нашли Нептун в пределах одного градуса от точки, на которую указал Леверье. Это стало одним из самых замечательных моментов в истории науки XIX века. Говорили, что Леверье открыл новую планету «на кончике пера»![13]
Поразительные успехи, подобные этому, достигались на протяжении нескольких столетий, подтверждая, что законы Ньютона представляют собой универсальные окончательные истины. Уже в XVIII веке французский математик Жозеф Луи Лагранж отметил, что Ньютону посчастливилось жить именно в тот уникальный момент человеческой истории, когда открыть законы Природы было возможно – ведь «устройство мира можно открыть лишь однажды». Сам Ньютон, впрочем, прилагал очень мало усилий, чтобы способствовать этому научному мифотворчеству: следуя традициям мистицизма, он видел в элегантной математической форме своих законов лишь проявление божьего промысла.
Именно такая математическая формулировка законов Природы и воплощает то, что сегодняшние физики понимают под словом «теория». Практическая ценность и прогностическая сила физических теорий в том, что они описывают реальный мир абстрактными математическими уравнениями, которыми мы можем манипулировать, чтобы предсказать реальные события, не прибегая к наблюдениям или экспериментам. И это работает! От открытия Нептуна до регистрации гравитационных волн и предсказания новых элементарных частиц и античастиц – опять и опять решения основанных на законах физики математических уравнений пророчат новые и неожиданные природные явления, которые затем действительно наблюдаются. Находясь под глубоким впечатлением от этой предсказательной силы, нобелевский лауреат Поль Дирак, как известно, утверждал, что наиболее перспективный путь развития физики заключается в отыскании самых интересных и красивых математических решений. Математика, говорил он, «ведет тебя за руку к открытию новых физических теорий»[14]. Афоризм Дирака взяли на вооружение в своих поисках окончательной «единой теории всего» сегодняшние создатели теории струн – они то и дело поддаются древнему искушению принять математическое совершенство своих теоретических построений за гарантию их истинности. Многие пионеры теории струн отмечали, что теория, обладающая настолько прекрасной математической структурой, просто не может не иметь никакого отношения к Природе.
Однако на более глубоком уровне мы все-таки не очень понимаем, почему теоретическая физика работает так хорошо. Почему Природа следует хитроумной математической программе, действующей под ее наружной видимой поверхностью? Что в действительности означают законы Природы? И почему они принимают именно такую форму? В ответах на эти вопросы большинство физиков-теоретиков продолжают следовать Платону. Они склонны представлять законы физики как вечные математические истины, не просто порожденные нашим разумом, но существующие в абстрактной реальности, которая лежит за пределами физического мира. Например, законы тяготения или квантовой механики обычно рассматриваются как приближения к окончательной теории, которая существует где-то там, в области, которую еще предстоит открыть, а не только у нас в головах. Поэтому, хотя в современную научную эпоху физические законы возникали прежде всего как инструменты для описания отыскиваемых в Природе структур, они с тех самых пор, как Ньютон обнажил их математические корни, обрели собственную жизнь и сами сделались неким видом реальности, заменяющей физический мир.
Для французского ученого-энциклопедиста начала XX столетия Анри Пуанкаре принятие концепции безусловных в платоновом смысле законов было необходимым предварительным условием занятий наукой вообще.
Идея первичных законов Пуанкаре интересна и важна, но одновременно и загадочна. Как именно эти столь удаленные от реальной общественной жизни законы, существующие в своем платоновском мире, объединяются для управления реальной физической Вселенной и управления ею, не говоря уж об их великолепной приспособленности для жизни? Открытие Большого взрыва поставило этот вопрос ребром: он больше не мог рассматриваться как «просто философский». Если Большой взрыв и вправду породил время, то, похоже, надо признать правоту Пуанкаре – ведь если физические законы определяют, как возникла Вселенная, естественно было бы думать, что они должны, по крайней мере в некотором смысле, существовать вне времени. Интересно, что таким образом теория Большого взрыва вводит в сферу физики и космологии то, что раньше было предметом чисто метафизических соображений. Эта теория ставит под вопрос некоторые из наших философских предположений о природе физических законов.
В конечном счете идея, что законы физики каким-то образом выходят за пределы окружающего мира, оставляет вопрос о причине их необыкновенной приспособленности для жизни полностью таинственным. Физики, приверженные этой схеме, могут лишь надеяться, что могучий математический принцип, который станет ядром «окончательной теории всего», однажды объяснит эту загадочную биофильность. Современный платоновский ответ на загадку мироздания, насколько он вообще возможен, заключается в математической необходимости: Вселенная такова, какова она есть, потому что у Природы нет выбора. Это почти что древняя аристотелева Конечная Причина в одежде современной теоретической физики. Больше того, даже оставляя в стороне тот факт, что «окончательная теория» остается несбыточной мечтой, надо признать, что даже если бы такой мощный математический принцип и был когда-нибудь найден, это вряд ли помогло бы понять, почему Вселенная оказалась настолько благосклонна к жизни. Никакая платоническая истина не смогла бы перекинуть мост через открытую на заре современной науки пропасть между миром неживого и миром живого. Нам пришлось бы заключить, что жизнь и разум – лишь счастливые совпадения, случившиеся в полностью безличной, совершенной математической реальности, и это мало продвинуло бы нас к пониманию причин такого совпадения.
Хотя опору на платоновскую идею высшего замысла в физике и космологии нельзя с порога назвать неверной, биологи, начиная с Дарвина, пришли к этой же идее по отношению к миру живого радикально иным путем.
В биологическом мире целенаправленные процессы и видимые признаки целенаправленного замысла проявляются повсеместно. Именно это, конечно, прежде всего и легло в основу телеологических взглядов Аристотеля на природу. Живые организмы устроены фантастически сложно. Даже в отдельной живой клетке содержится разнообразный набор молекулярных компонентов, прекрасным образом соединившихся для выполнения ее многочисленных функций. В организмах большего размера огромное количество клеток работают вместе как слаженный оркестр и образуют хитроумные целенаправленные структуры – к примеру, глаз или мозг. До Чарльза Дарвина люди не могли понять, как физические и химические процессы могли сами по себе создать системы такой ошеломляющей сложности – чтобы это объяснить, приходилось предполагать присутствие Создателя. В XVIII столетии английский священник Уильям Пейли уподоблял чудесную слаженность мира жизни работе часового механизма. Как и в часах, утверждал Пейли, в биологическом мире признаки замысла, конструкции слишком сильны, чтобы их можно было не замечать. «Творение должно иметь Творца»[15]. Однако дарвиновская теория эволюции, сломавшая старую парадигму, решительно устранила телеологическое мышление из биологии. Глубочайшая идея Дарвина заключалась в том, что биологическая эволюция – естественный процесс и что видимая гармония и целесообразность живых организмов могут объясняться действием простых механизмов случайных изменений и естественного отбора. Необходимость в привлечении Творца отпала.
На Галапагосских островах Дарвин обнаружил множество разновидностей вьюрков – мелких птичек, отличавшихся друг от друга размером и формой клювов. У вьюрков, живших в траве, были сильные клювы, удобные для щелканья орехов и дробления семян, тогда как у древесных вьюрков – заостренные острые клювы, хорошо приспособленные для вытаскивания насекомых из-под коры. Эти и другие данные, собранные Дарвином в путешествии, позволили ему предположить, что связанные между собой разновидности вьюрков эволюционировали со временем так, чтобы более эффективно использовать доступные ресурсы в их экологических нишах. В 1837 году, по свежим впечатлениям от своего плавания на Галапагосские острова на корабле «Бигль», Дарвин сделал в одной из своих красных записных книжек набросок дерева с хаотически расположенными ветвями. В этом наброске, напоминающем генеалогическое древо какого-нибудь древнего рода, отразилась суть глубокой и плодотворной теории ученого: все живое на Земле связано и произошло от единого общего предка – символизируемого стволом древа – посредством постепенного и пошагового процесса селекции под влиянием окружающей среды, действующего на случайно мутирующие репликаторы (см. рис. 4 на вклейке).
Ключевая идея дарвинизма состоит в том, что Природа не «заглядывает вперед» – она не предвосхищает того, что может впоследствии понадобиться для выживания. Напротив, любые тренды, такие как изменение формы клюва или постепенный рост длины шеи у жирафов, вызываются давлением отбора под воздействием окружающей среды; оно, это давление, действует на протяжении длительных периодов времени, усиливая полезные свойства.
«Есть величие в воззрении, – напишет Дарвин более двадцати лет спустя, – по которому жизнь с ее различными проявлениями Творец первоначально вдохнул в одну или ограниченное число форм; и, между тем как наша планета продолжает вращаться согласно неизменным законам тяготения, из такого простого начала развилось и продолжает развиваться бесконечное число самых прекрасных и самых изумительных форм»[16].
Дарвинизм опрокинул аргумент Пейли с часовщиком, продемонстрировав, что этим часам швейцарский часовщик не требуется. Учение Дарвина дало подробное эволюционное описание живого мира, согласно которому его видимая упорядоченность и законы, которым он подчиняется, понимаются как развивающиеся свойства естественных процессов, а не как результат сверхъестественного акта творения.
Однако, несмотря на их красоту и величие, биологические законы часто воспринимаются как чуть менее фундаментальные, чем законы физики. Возникающие структурные закономерности могут быть устойчивыми, но никому не приходит в голову считать их вечными. Более того, детерминизм и предсказуемость в биологии сыграли гораздо менее принципиальную роль. Ньютоновские законы движения детерминистские: они позволяют физикам предсказывать положения объектов на любой момент будущего по их положениям и скоростям на сегодняшний день (или на любой момент прошлого). В дарвиновской схеме случайность мутаций в живых системах означает, что почти ничего нельзя предопределить наперед – даже новые законы, которые однажды могут возникнуть. Недостаток детерминизма придает биологии сильный ретроактивный оттенок. Мы можем понять смысл биологической эволюции, только глядя на нее ретроспективно, обернувшись в прошлое. Теория Дарвина не входит в подробности реального эволюционного пути от самых ранних проявлений жизни до сегодняшней разнообразной и сложной биосферы. Она не предсказывает строения древа жизни, так как это не было – и не могло быть – ее целью. Гений Дарвина проявился в том, как он очертил основные организационные принципы эволюции. Заполнение исторической летописи жизни досталось на долю филогенетики и палеонтологии. Другими словами, дарвиновская теория эволюции констатирует, что жизнь есть совместный продукт неких закономерностей и конкретной истории. Ценность этой теории заключается в том, что она позволяет ученым ретроспективно конструировать древо жизни, исходя из наших сегодняшних наблюдений за биосферой и из гипотезы общего происхождения.
Яркий пример такого подхода дают нам дарвиновские вьюрки. Если бы Дарвину вздумалось провести логическую цепочку из прошлого в будущее и на основе знаний о химической среде добиологической Земли попытаться предсказать, какие появятся новые виды галапагосских вьюрков, он потерпел бы полное поражение. Существование вьюрков или любых других особей, населяющих нашу планету, не может быть выведено только на основе законов физики и химии – потому что каждое ветвление, происходящее в процессе биологической эволюции, включает в себя элемент случайности. Некоторым случайным исходам обстоятельства, складывающиеся в окружающей среде, благоприятствуют, и такие исходы «замораживаются», часто с драматическими последствиями. Такие «замороженные» случайности помогают определить характер последующей эволюции и могут даже принимать форму новых биологических законов. Законы наследственности Менделя, например, связаны с исходом коллективных ветвлений при половом размножении организмов.
На рис. 5 я привожу современную версию филогенетического древа жизни, основанную на анализе последовательности рибосомной РНК. Диаграмма изображает три домена – бактерии, археи и эвкариоты – и их общего предка, лежащего в корне древа. Всё на древе жизни, начиная с молекулярной основы и заканчивая разновидностями вьюрков, вобрало в себя сложную свертку миллиардов лет химического и биологического «экспериментирования». Это и делает биологию наукой преимущественно ретроспективной. Эволюционный биолог Стивен Джей Гулд выразился так: «Если мы перемотаем историю жизни к ее началу и проиграем эту пленку еще раз, все виды живых существ, строение организмов и фенотипы, которые образуются в результате эволюции, могут оказаться совершенно другими»[17].
Рис. 5. Древо жизни, изображающее три биологических домена.
В основе древа – универсальный общий предок (Last Universal Common Ancestor – LUCA), последняя по времени популяция организмов, от которой произошли все существующие на Земле формы жизни.
Недостаток детерминизма, свойственный биологической эволюции, распространяется и на другие уровни истории, от абиогенеза до истории человечества. Подобно Дарвину, историки, объясняя случайные изгибы и повороты истории, проводят различие между описанием того, «как» что-либо произошло, и объяснением того, «почему» это произошло. Описывая «как», историки рассуждают ретроспективно, как и биологи – реконструируют ряды конкретных событий, которые ведут от некоторой исходной точки к данному исходу. Однако, объясняя «почему», мы должны думать как физики – пробиваться сквозь время, чтобы идентифицировать причинные, детерминистские связи, при помощи которых можно предсказать выбор одного конкретного исторического пути из всех остальных. Поверхностное прочтение истории часто грешит предложением причинного детерминистского объяснения тому, почему события произошли именно так, а не иначе. Но более тщательный анализ обычно выявляет хитроумное переплетение соперничающих сил и взаимодействий; они вместе с огромным числом сопутствующих случайностей и приводят к выбору пути, который часто очень далек от естественного, и уж конечно не был неизбежен. Это и заставляет нас описывать «как», а не «почему».
Из окна моего кабинета я вижу лес, расположенный несколькими милями южнее поля битвы при Ватерлоо. 17 июня 1815 года, накануне главного сражения, Наполеон Бонапарт приказал одному из своих генералов, Эмманюэлю де Груши, преследовать прусскую армию, чтобы не дать ей соединиться с союзными силами англичан, занимавших позиции дальше к северу. Исполняя приказание, Груши двинулся на северо-восток с изрядной частью французских войск, но пруссаков не нашел. На следующее утро он услышал – из леса, который я сейчас вижу, сидя за рабочим столом, – отдаленный грохот французских орудий и понял, что сражение началось. Несколько критических минут он колебался, размышляя, не следует ли ему нарушить приказ императора и повернуть обратно, на помощь своим. Но он решил – наперекор судьбе – продолжать двигаться туда, где по его представлениям находилась прусская армия. Решение, принятое Груши в тот момент, – типичный «замороженный случай»; он не просто повлиял на исход сражения, но и оказал воздействие на весь ход европейской истории.
Или возьмем другой пример: установление христианства в Римской империи в IV веке н. э. Когда император Константин взошел на трон в 306 году, христианство было всего-навсего малопримечательной сектой, борющейся за влияние с дюжиной других провинциальных культов. Почему же именно христианство завоевало Римскую империю и стало мировой религией? Историк Юваль Харари в своей книге Sapiens утверждает, что причинного объяснения этому нет и что доминирующую роль христианства в Западной Европе лучше всего рассматривать как еще один «замороженный случай». Откликаясь на мысли Гулда, относящиеся к биологии, Харари пишет: «Если бы мы могли перематывать историю назад, как кинопленку, и переиграть IV век раз сто, мы бы увидели, что христианство завоюет Римскую империю всего пару-тройку раз». Но этот «замороженный случай» имел далекоидущие последствия: монотеизм способствовал вере в Бога-творца, создателя рационального плана Вселенной. Поэтому неудивительно, что, когда двадцать веков спустя в христианской Европе наконец возникла современная наука, первые ученые воспринимали свои исследования как вид религиозных исканий, готовящих почву для решения загадки «плана мироздания» – загадки, которую мы все еще пытаемся разгадать.
ОБЪЯСНЯЯ «ПОЧЕМУ», МЫ ДОЛЖНЫ ДУМАТЬ КАК ФИЗИКИ – ПРОБИВАТЬСЯ СКВОЗЬ ВРЕМЯ, ЧТОБЫ ИДЕНТИФИЦИРОВАТЬ ПРИЧИННЫЕ, ДЕТЕРМИНИСТСКИЕ СВЯЗИ, ПРИ ПОМОЩИ КОТОРЫХ МОЖНО ПРЕДСКАЗАТЬ ВЫБОР ОДНОГО КОНКРЕТНОГО ИСТОРИЧЕСКОГО ПУТИ ИЗ ВСЕХ ОСТАЛЬНЫХ.
Вообще говоря, мириады путей, широко открывающихся с любой точки истории – как истории человечества, так и биологической или астрофизической эволюции, – говорят о том, что детерминистские объяснения работают только на очень грубом уровне. На любой стадии эволюции детерминизм и причинность формируют лишь наиболее общие структурные тренды и особенности, часто обусловленные законами, действующими на более низком уровне сложности. Полная неожиданных изгибов и поворотов история человечества, например, до сих пор в основном разыгрывалась в пределах планеты Земля – не считая нескольких кратковременных контактов посредством космических аппаратов с другими телами Солнечной системы. Это неудивительно – и значит, вполне предсказуемо; ведь человечество существует в определенной физической и геологической среде. Но этот факт не скажет нам ничего об особенностях какой-либо конкретной исторической эпохи.
Подобным же образом порядок расположения химических элементов и структура Периодической таблицы Менделеева, в сущности, жестко определяются законами физики частиц на более фундаментальном уровне. Но конкретные обилия этих элементов на Земле определяются бесчисленными случайностями геологического развития в том или ином месте.
На биологическом уровне вся жизнь на Земле основана на молекулах ДНК, а гены состоят из четырех нуклеотидов, обозначаемых A, C, G и T. Конкретный состав «строительных кирпичиков» молекулы ДНК, вероятно, является случайным исходом абиогенеза на нашей планете. Но базовая способность к вычислениям, которой жизнь должна овладеть, чтобы поддерживать свое существование, лежит на более глубоком уровне. Исходя из еще более глубоких математических и физических принципов, она вполне может определять широкие структурные свойства молекулярного переносчика генетической информации. Это подтверждается теоретическими работами по конструированию самовоспроизводящихся автоматов, выполненными в 1948 году американским математиком венгерского происхождения Джоном фон Нейманом. За пять лет до открытия Уотсоном и Криком структуры ДНК фон Нейман идентифицировал критические вычислительные задачи, которые жизнь должна решить для обеспечения своего существования, и определил сложно устpoенную структуру – по всей видимости, единственно возможную, – обладающую способностью самовоспроизводства. Очерченная им структура мгновенно распознается как ДНК.
Эволюция постоянно создает гигантскую цепь «замороженных случаев». Низкие уровни сложности задают среду существования более высоких уровней эволюции. Но при этом все равно остается столько места для неожиданных поворотов и скачков, что часто реализуются самые невероятные ответвления – и детерминизм терпит крах. Случайные исходы бесчисленных событий ветвления вносят в ход эволюции элемент принципиальной непредсказуемости. Они несут с собой огромное количество структурных и информационных изменений, не выводимых из законов более низкого уровня, и на более высоких уровнях эти изменения могут создавать – и часто создают – новые имеющие вид законов соответствия. Например, хотя сегодня ни один серьезный ученый не верит в существование в биологии особых «жизненных сил», не имеющих какого бы то ни было физико-химического происхождения, физика сама по себе все же не определяет действующие на Земле биологические законы.