Помимо скелетных мышц еще два других типа: сердечная мышца, которая управляет вашим сердцем, и гладкие мышцы, обеспечивающие работоспособность и поддержку внутренних органов. Они работают независимо от того, думаете ли вы о них или нет…
Энергетика мышц
Мышцы состоят из взаимодействующих друг с другом толстых и тонких белковых нитей. Мышечные клетки окружены специальной оболочкой – мембраной и состоят из большого количества миофибрилл. Последние погружены во внутриклеточную жидкость, которая и обеспечивает их энергетическими субстратами. Во внутриклеточной жидкости содержатся аденозинтрифосфат (АТФ), гликоген, фосфокреатин и гликолитические ферменты. Большое количество содержащихся в мышцах митохондрий являются своеобразными энергетическими «станциями». Они содержат различные ферменты – ускорители биохимических процессов накопления энергии путем синтеза, или с образованием АТФ.
При мышечном сокращении происходит скольжение толстых и тонких нитей относительно друг друга. Толстые нити миофибрилл, по существу, состоят из молекул миозина, а молекулы актина являются основными компонентами тонких нитей. Именно связывание миозином актина играет ключевую роль в обеспечении смещения толстых и тонких нитей друг относительно друга. Физиологическим регулятором сокращения мышц служат ионы кальция. Нервный импульс запускает их в пространство, где и происходит взаимодействие между актином и миозином. В состоянии покоя работает система активного транспорта ионов кальция и накапливает его в своеобразном хранилище, из которого он освобождается при прохождении нервного импульса, обеспечивая мышечное сокращение. Система транспорта ионов кальция работает за счет энергии АТФ. Того количества АТФ, которое имеется в мышце, хватает на поддержание сократительного аппарата всего в течение доли секунды. Более продолжительная работа обеспечивается за счет энергии, запасенной в форме фосфокреатина или креатинфосфата (КрФ). Креатинфосфат имеет более высокий потенциал переноса высокоэнергетических фосфатных групп, чем универсальный АТФ. Фосфогены в виде фосфокреатина восстанавливают работу АТФ, обеспечивая тем самым приток энергии для мышечного сокращения. Однако в работающей мышце запасы фосфокреатина быстро истощаются, что снижает и содержание АТФ.
Следующим источником энергии для мышц при более продолжительной физической нагрузке является гликолиз. С истощением запасов креатина, в мышце понижается энергетический заряд мышечного сокращения. Это и приводит к стимуляции гликолиза, цикла трикарбоновых кислот и окислительного фосфорилирования в работающей мышце. Гликолиз представляет собой процесс расщепления углеводов под действием ферментов, с накоплением энергии в виде АТФ. Побочным продуктом этой реакции является молочная кислота (лактат), образующийся при расщеплении углеводов в отсутствии кислорода. Согласно расчетам биохимиков, конечными продуктами расщепления молекул углеводов в условиях недостатка кислорода (анаэробных условиях) являются две молекулы лактата и две молекулы АТФ. Если же для гликолиза используется гликоген мышц, то образуются две молекулы лактата и три молекулы АТФ, что более эффективно. Гликоген представляет собой главный резервный полисахарид в мышцах и печени. В отношении этого важного источника энергии для мышечного сокращения работает двунаправленный механизм. Суть последнего состоит в том, что при пониженном уровне гликогена в мышцах и печени и наличии свободной глюкозы в крови, она используется для синтеза гликогена. И, наоборот, при потребностях организма в энергетическом источнике для процессов гликолиза используется гликоген. Мнение тренеров и спортсменов, что молочная кислота создает в мышцах боль после тренировок, неверно. Согласно последним исследованиям ученых, молочная кислота в мышцах фактически является запасным источником топлива для их сокращений. Она создает быстрый источник энергии в работающих мускулах.
Цикл Кребса (Цикл трикарбоновых кислот) служит универсальным завершающим этапом расщепления углеродсодержащих соединений в организме и играет центральную роль в обмене веществ и энергии в организме. Цикл Кребса тесно связан с процессами дыхания и окислительного фосфорилирования. Последнее протекает в митохондриях клеток, а освобождаемая при этом энергия также частично используется для синтеза АТФ. Путей получения энергии много, но относительный вклад каждого из процессов в ресинтезе АТФ зависит от времени мышечной работы и от типа мышц. Так, например, процессы окислительного фосфорилирования интенсивнее протекают в красных мышечных волокнах, цвет которых обусловлен более высоким содержанием миоглобина и цитохромов в дыхательной цепи, чем в белых мышцах.
Для обеспечения работы мышц необходимо большое количество энергии. Для ее получения используется три основных источника «топлива». Это – креатинфосфат (или фосфокреатин), углеводы в виде гликогена и глюкозы, жиры. Эти три вида энергоносителей различаются между собой по величине освобождаемой при их использовании энергии и по тому, как долго может каждый из них служить «топливным» источником. При продолжительной неинтенсивной работе в окислительных процессах используются жиры и углеводы, а при работе несколько большей интенсивности используются механизмы анаэробного гликолиза, так как окислительный метаболизм в этих условиях не обеспечивает потребностей в энергии. При очень интенсивной кратковременной нагрузке работа мышц обеспечивается за счет фосфагенов. Использование трех видов «топлива» и обуславливает то, что чем продолжительнее нагрузка, тем меньше ее мощность.
Выделяют три типа мышечных волокон – красные, белые и промежуточные. Их окраска зависит, главным образом, от содержания миоглобина. Красные волокна принято считать «медленными», а белые – «быстрыми». Красные волокна работают в основном в аэробном режиме, а белые – в режиме кислородного долга. Первые, как правило, используются для выполнения легкой или умеренной работы, а белые начинают функционировать лишь тогда, когда к ним значительно возрастает приток возбуждающих импульсов во время очень интенсивной работы. Волокна промежуточного типа сохраняют свойства и красных, и белых волокон, за что и получили название «быстрых красных». Такое разделение или специализация волокон основывается на адаптации ферментов и метаболических систем мышц. Процентное содержание тех, или иных волокон зависит от генетических факторов, в сочетании с родом повседневной деятельности – занятием тем или иным видом спорта, или физического труда. Обладатели преимущественно красной мускулатуры достигают лучших результатов в видах спорта на выносливость (плавание, бег на средние и длинные дистанции, велоспорт и так далее). Те, у кого больше белых мышечных волокон имеют склонность к силовым упражнениям. Последнее объясняется и тем, что белые волокна легче гипертрофируются, то есть увеличиваются в объеме и тренируются «на силу».
Формы и типы мышечного сокращения
Двигательный аппарат человека можно представить как самодвижущийся рычажный механизм, состоящий примерно из 600 мышц, 200 костей, нескольких сотен сухожилий. Кости и их соединения (суставы, связки и пр.) составляют скелет, являющийся твердой опорой тела человека. Двигательный аппарат обычно разделяют на звенья, называя звеном часть тела, расположенную между двумя соседними суставами или между суставом и дистальным (более удаленным от туловища) концом. Так, звеньями тела являются кисть, предплечье, голова и так далее. Движения в звеньях тела осуществляются благодаря усилиям мышц, прикрепляющихся к костям скелета. Можно сказать, что мышцы составляют активную часть двигательного аппарата человека. Любое движение – это результат действия тяги одной или нескольких мышц, изменяющий взаимное расположение звеньев тела. Направлением тяги мышцы считается прямая линия, соединяющая центры мест ее начала и прикрепления. Обычно вращение в суставе обеспечивается группой мышц, причем направление тяги любой из мышц данной группы только в редких случаях полностью совпадает с направлением движения звена. В таком случае результат совместного действия двух и более мышц определяется равнодействующей мышечных сил, величина и направление которой зависят от взаимного расположения мышц и величины развиваемых ими усилий. Напомним, что равнодействующей называют силу, которая производит такое же действие, как и несколько одновременно действующих сил. Так, например, направление тяги большой грудной мышцы и широчайшей мышцы спины не совпадает с направлением движения плеча в фазе подъема туловища при подтягивании на перекладине, но их равнодействующая вносит существенный вклад в выполнение данного движения.
Кости, соединённые подвижно в суставах, с точки зрения механики – это рычаги, которые служат для передачи действия силы на расстояние. Суставы представляют собой точку опоры рычага. Таким образом, рычаг является принципиальным механизмом, служащим для передачи и полезного использования механической энергии в двигательном аппарате. В целом двигательный аппарат человека можно рассматривать как систему рычагов, подвижно соединенных в суставных сочленениях. Движение костных рычагов в ту или иную сторону относительно суставов, а также их фиксация осуществляется в результате взаимодействия мышечных сил и сил внешней нагрузки. Законы изменения взаимного расположения звеньев тела под действием внешних сил и сил тяги мышц подчиняется законам, известным в механике как «правила рычага». Поскольку любое поступательное движение (например, движение туловища вверх в фазе подъёма) складывается из вращательных движений в суставах, для силы важна не столько её величина, сколько вращательная способность, численно равная произведению силы на её плечо, то есть на расстояние от направления действия силы до оси вращения. Такая вращающая способность называется моментом силы. Когда момент силы тяги мышц равен моменту сил сопротивления – часть тела, к которой приложены силы, находится в равновесии. Для начала движения части тела необходимо, чтобы один из моментов был больше другого. Так, при подтягивании *в фазе подъёма момент силы тяги мышц, производящих подтягивание, больше момента силы тяжести, поэтому мышцы сокращается, звенья тела движутся в сторону тяги мышц, которые в данном случае совершают преодолевающую работу. *В фазе опускания момент силы тяжести становится больше момента силы тяги мышц, поэтому звенья тела движутся в противоположном направлении, мышцы растягиваются, выполняя при этом уступающую работу. *При «зависании» в какой-либо точке траектории движения моменты сил мышц и силы тяжести равны друг другу, тело остаётся неподвижным. Мышцы в этом случае совершают удерживающую работу. Работа мышц в преодолевающем и уступающем режимах относится к динамической форме сокращения, а в удерживающем – к статической.
Сокращение скелетных мышц возникает в ответ на нервные импульсы, идущие от специальных нервных клеток – мотонейронов. В процессе сокращения в мышечных волокнах возникает напряжение. Напряжение, развиваемое при сокращении, реализуется мышцами по-разному, что и определяет различные формы и типы мышечного сокращения. Если внешняя нагрузка меньше, чем напряжение сокращающейся мышцы, то мышца укорачивается и вызывает движение. Такой тип сокращения называют концентрическим или миометрическим. В лабораторных условиях при электрическом раздражении изолированной мышцы, ее укорочение происходит при постоянном напряжении, равном величине внешней нагрузки. Поэтому данный тип сокращения называют также изотоническим (изос – равный, тонус – напряжение). В начале изотонического сокращения увеличивается напряжение мышцы, а когда его величина сравняется с величиной внешней нагрузки, начинается укорочение мышцы.
Если внешняя нагрузка на мышцу больше, чем напряжение, развиваемое во время сокращения, мышца растягивается. Такой тип сокращения называют эксцентрическим или плиометрическим. С помощью специальных устройств можно регулировать внешнюю нагрузку таким образом, что с ростом напряжения мышцы величина внешней нагрузки в такой же степени увеличивается, а при уменьшении мышечного напряжения – величина внешней нагрузки настолько же снижается. В данном случае при постоянной активации мышц движение осуществляется с постоянной скоростью. Такой тип сокращения мышц называется изокинетическим. + Сокращения, при которых мышца изменяет свою длину (концентрические, эксцентрические, изокинетические), относятся к динамической форме сокращения. + Сокращение, при котором мышца развивает напряжение, но не изменяет своей длины, называется изометрическим (изос – равный, метр – длина). Изометрическое сокращение мышц относится к статической форме сокращения. Она реализуется в двух случаях. Во-первых, когда внешняя нагрузка равна напряжению, развиваемому мышцей при сокращении. И во-вторых, когда внешняя нагрузка превышает напряжение мышцы, но отсутствуют условия для растяжения мышцы под влиянием этой нагрузки. Примером второго случая может служить лабораторный эксперимент, в котором раздраженная с помощью электричества изолированная мышца пытается приподнять лежащий на столе груз, величина которого превосходит ее подъемную силу.
В реальных условиях деятельности мышц практически не встречается чисто изометрическое или изотоническое сокращение, так как при выполнении двигательных действий внешняя нагрузка на сокращающиеся мышцы не остается постоянной вследствие изменения механических условий их работы, то есть изменения плеч сил и углов их приложения. Смешанную форму сокращения, при которой изменяется как длина, так и напряжение мышцы, называют ауксотоническои или анизотонической.
Часть 2. Тренировка
Секреты хорошей физической формы
*
Обращали ли вы когда-нибудь внимание на действительно старых людей? Я имею в виду не возраст, а именно физическое состояние. Что прежде всего бросается в глаза? Нет, нет, не лица, изрезанные морщинами… Походка – вот что. Она выдает старость. Ограниченные движения, лишенные мягкости и законченности, словно фразы, оборванные на полуслове. И, конечно, фигуры – скрюченные, согбенные, искореженные временем. Отчего это? С годами изнашиваются позвоночные диски, деформируются, обрастают отложениями солей. В результате – ущемление нервных окончаний, что в свою очередь ведет к многочисленным недугам. То же самое происходит со всеми суставами. И пока есть только один способ остановить этот обязательно сопутствующий старости процесс – физкультура. А точнее – специально направленная на глубокую проработку суставов гимнастика. Дети не знают, что такое старость; трудно заставить думать о ней и молодых людей. Человек чаще всего начинает вспоминать о грядущей старости или о необходимости, скажем так, профилактики старости, когда прозвенит какой-нибудь неприятный «звоночек». Вот тут и нужно начинать занятия… Домашняя гимнастика может длиться от 30 минут и до часа, в зависимости от самочувствия… Час-два в день для физических упражнений может и должен находить каждый, даже самый занятой человек. Мы все равно к этому придем. Для занятий можно использовать любое свободное время. Допустимо даже делить комплекс в течение дня на несколько частей. Равно как необязательно проделывать и каждый день. Скажем, если у вас плохое самочувствие или просто нет желания, можно ограничиться только легкой зарядкой.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги