Мы используем слова «начало» и «прикрепление» для того, чтобы указать, к каким местам костей прикрепляется мышца, отвечающая за движение в данном суставе. Началом мышцы считают место ее соединения с относительно неподвижной костью, а прикреплением – место на кости, которая при сокращении смещается. Здесь хорошим примером снова будет сгибание в локтевом суставе. Так как в этой ситуации плечо относительно неподвижно, мы говорим, что двуглавая мышца плеча начинается на плече, а прикрепляется к предплечью (см. рис. 1.1).
Функционально начало и прикрепление мышцы могут меняться местами. Если широчайшая мышца спины (см. рис. 8.9–8.10) тянет руку вниз и назад во время гребка при плавании, то, согласно учебникам, местом ее прикрепления служит плечевая кость. Но если мы подтягиваемся на перекладине, то плечо относительно неподвижно, и местом прикрепления становится тазовая кость, а действие мышцы заключается в поднятии всего тела. В следующих главах мы увидим много примеров того, как меняются местами точки начала и прикрепления разных мышц.
Мышцы-агонисты и антагонистыМышцы, окружающие один сустав, взаимодействуют, но при этом одна из них, агонист, служит первичным движителем, действию которого способствуют другие, вспомогательные мышцы, называемые синергистами. Агонисты и синергисты действуют по одну сторону от сустава, а мышцы, расположенные по другую сторону сустава, действуют как антагонисты. Как явствует из самого названия, антагонисты сглаживают, контролируют и даже тормозят главное движение. Например, при сокращении двуглавой мышцы плеча и плечевой мышцы (агониста и синергиста) происходит сгибание локтя, но трехглавая мышца плеча (расположенная по другую сторону сустава), действуя как антагонист, сопротивляется сгибанию, удерживая элементы сустава в правильном взаимном расположении (см. рис. 1.1).
Мышцы работают во взаимодействии с силой тяжести. В нижних конечностях мышцы-разгибатели являются антигравитационными мышцами, позволяющими удерживать тело в вертикальном положении. Примеры: четырехглавая мышца бедра (рис. 1.2, 3.9 и 8.11), расположенная на передней поверхности бедра (участок нижней конечности между тазобедренным суставом и коленным суставом), выпрямляет коленный сустав, когда вы встаете на возвышение, а икроножные мышцы разгибают голеностопный сустав, чтобы вы могли приподняться на цыпочках и дотянуться до высокой полки. Мышцы-сгибатели являются антагонистами мышц-разгибателей. Они могут действовать двумя способами. Иногда они помогают силе тяжести, например, если вы наклоняетесь вперед из положения стоя, а затем быстро приседаете, согнув ноги в тазобедренных суставах с помощью мышцы-сгибателя – подвздошно-поясничной мышцы (см. рис. 2.8, 3.7, 3.9 и 8.13). Но мышцы-сгибатели могут действовать и как антигравитационные мышцы: если вы захотите бежать на месте, то подвздошно-поясничные мышцы, сокращаясь, будут поднимать бедро, приближая колени к груди. Если же вы захотите пнуть себя по ягодице, то подколенные сухожилия сгибающей бедренной мышцы (см. рис. 3.8, 3.10, 8.10 и 8.12) при ее сокращении оторвут голень (часть нижней конечности между коленом и голеностопным суставом) от земли и притянут ее к бедру. Но даже с учетом этих моментов мышцы-сгибатели нижних конечностей не считаются антигравитационными мышцами, потому что в обычных условиях они представляют собой антагонисты мышц, поддерживающих тело в вертикальном положении.
В верхних конечностях ситуация иная, потому что если вы не делаете что-то необычное, например не идете на руках со слегка согнутыми локтями (что требует активного участия трехглавой мышцы плеча), то мышцы-разгибатели не поддерживают вес тела. В большинстве обыденных ситуаций в качестве антигравитационных мышц выступают как раз сгибатели, а не разгибатели, например, когда вы поднимаете груз или подтягиваетесь на перекладине.
Концентрическое сокращение и эксцентрическое удлинениеДля того чтобы понять, как работает скелетно-мышечная система в хатха-йоге, надо разобраться, какой вклад вносят мышцы в целостную работу организма. Самая простая ситуация – это концентрическое сокращение, или «концентрическое укорочение», в ходе которого мышечные волокна подвергаются воздействию множества нервных импульсов, и мышца целиком отвечает сокращением, как, например, происходит с двуглавой мышцей плеча, когда сокращается при поднимании книги со стола.
Гораздо сложнее дело обстоит, когда мы кладем книгу на стол. Обычно мы не бросаем предмет, а аккуратно кладем его на место, разгибая руку в локтевом суставе, при этом мышца в целом становится длиннее, хотя некоторые ее волокна находятся в состоянии сокращения. В каждом случае, когда это происходит – когда мышца удлиняется, находясь в напряженном состоянии из-за сопротивления силе тяжести, – движение называют «эксцентрическим удлинением».
Мы наблюдаем концентрическое сокращение и эксцентрическое удлинение в большинстве случаев нашей обыденной деятельности. Когда вы поднимаетесь вверх по лестнице, мышцы, поднимающие тело на очередную ступеньку, сокращаются концентрично; когда же вы спускаетесь по лестнице, те же мышцы эксцентрично удлиняются, чтобы сделать спуск более плавным. Если вы взбираетесь вверх по канату, поочередно захватывая его руками, то мышцы верхних конечностей сокращаются концентрично; если же вы спускаетесь по канату вниз, то те же мышцы эксцентрично удлиняются.
В хатха-йоге мы наблюдаем концентрическое сокращение и эксцентрическое удлинение в сотнях ситуаций. Простейшая из них: какая-то мышца или группа мышц сопротивляется силе тяжести, как, например, мышцы спины, которые концентрично сокращаются для того, чтобы поднять туловище из положения наклона в положение стоя. Когда же вы начинаете наклоняться, мышцы спины сопротивляются силе тяжести, которая тянет тело вниз, эксцентрично удлиняясь, чтобы сделать движение плавным.
Изотоническая и изометрическая мышечная активностьДумаю, что большинство читателей уже знакомы с терминами «изотонический» и «изометрический». Строго говоря, термином «изотоническое сокращение» описывают работу мышцы в условиях постоянной нагрузки, но в реальности такая ситуация практически не встречается, если не считать движений с чрезвычайно малой амплитудой. Со временем, однако, термин стали употреблять, имея в виду упражнения, в ходе которых мышцы сокращаются, преодолевая умеренное сопротивление. С другой стороны, термин «изометрическое упражнение» используется с большей точностью – для обозначения застывшей позы, часто в условиях существенного сопротивления. Например, ритмичное поднимание книги со стола и укладывание ее на место – это изотоническое упражнение для двуглавой мышцы плеча и ее синергистов, а удерживание книги на весу в одном положении – изометрическое упражнение для тех же мышц. В спорте в основном выполняются изотонические упражнения, так как они предусматривают совершение движений. Очевидное исключение составляет японская борьба сумо, в которой соперники захватывают друг друга и застывают в неподвижности. Изометрические сокращения характерны для всех без исключения поз хатха-йоги, предусматривающих сохранение позы.
Расслабление, растяжение и подвижностьЕсли на мышечные волокна действуют редкие нервные импульсы или они вообще на них ней действуют, то мышца расслаблена, как, например, в тот момент, когда вы находитесь в позе покойника (см. рис. 1.14). Ситуация, однако, усложняется, если покоящиеся мышцы растянуты. Это становится очевидным при работе с партнером. Если вы ляжете на спину, закинете за голову выпрямленные руки и попросите партнера потянуть вас за запястья, то заметите, что очень легко переносите растяжение, если обладаете достаточной гибкостью. Но если партнер потянет слишком сильно или вы ощутите боль, то нервная система покончит с релаксацией и вызовет сокращающее напряжение растягиваемых мышц. Наконец, если вы потерпите эту боль, то через некоторое время мышцы снова обретут способность к растяжению, что немедленно почувствует и партнер, который сможет теперь тянуть сильнее.
Многие из этих реакций станут очевидными, если вы будете выполнять упражнения на растяжение самостоятельно, например уперевшись ладонями выпрямленных и заведенных за голову рук в стену и начав растягивать мышцы передней поверхности предплечий. Это потребует куда большей сосредоточенности, чем пассивное растяжение с помощью партнера, потому что вам придется сосредоточиться на двух задачах одновременно: создать условия, необходимые для растяжения, и при этом следить за расслаблением. Но и здесь действует то же самое правило. Если вы зашли слишком далеко или поспешили, то организм отреагирует болью в растягиваемых мышцах, что испортит все упражнение.
Мышечная активность и позы выпадаДля того чтобы понять, как работают скелетные мышцы в хатха-йоге, попробуйте принять позу воина (поза воина I): ноги широко разведены, руки подняты над головой, ладони сомкнуты (рис. 1.2 и 7.20). Прочувствуйте, что вы испытываете, когда медленно поднимаете руки вверх и опускаете туловище вниз. Для того чтобы поднять руки вверх и сместить их кзади, мышцы, находящиеся на задней поверхности верхних конечностей, должны находиться в состоянии концентрического сокращения, в то время как мышцы-антагонисты, находящиеся на передней поверхности, пассивно сопротивляются растяжению и завершению позы. По мере опускания тела книзу четырехглавая мышца бедра на передней поверхности согнутой нижней конечности сопротивляется действию силы тяжести и эксцентрично удлиняется. Наконец, когда вы застываете в этой позе, мышцы всего тела переходят в состояние изометрического сокращения.
Мы не сможем понять принципы работы скелетно-мышечной системы, если не познакомимся с нервной системой и соединительной тканью. Пока же важно понять, что вся мышечная активность, будь то сокращение отдельных мышечных клеток, выполнение изотонического или изометрического упражнения, деятельность агонистов и антагонистов, концентрическое сокращение или эксцентрическое удлинение, происходит под контролем нервной системы.
Рис. 1.2. Поза воина I
Нервная система
Мы ощущаем все происходящее в материальном мире посредством специализированных клеток, называемых нейронами, сто миллиардов которых находятся в одном только головном мозге; эти клетки направляют потоки информации по всему телу и внутри центральной нервной системы (головного и спинного мозга). Вся передача информации осуществляется всего лишь тремя типами клеток: чувствительными нейронами, которые переносят поток ощущений от периферической нервной системы (по определению, это все части нервной системы, находящиеся вне головного и спинного мозга) в центральную нервную систему и в сознание; двигательными нейронами, которые передают из головного и спинного мозга инструкции, предназначенные для периферической нервной системы; и вставочными, или ассоциативными нейронами, которые находятся между чувствительными и двигательными нейронами, – эти нейроны передают сигналы нашей воли и желаний двигательным нейронам. Сенсорная (чувствительная) информация поступает в задние рога спинного мозга через задние корешки, а двигательная информация выносится из передних рогов спинного мозга в передние корешки. Задние и передние корешки сливаются, образуя смешанные (двигательные и чувствительные) спинномозговые нервы, которые, в свою очередь, иннервируют все структуры организма (рис. 1.3–1.9).
Рис. 1.3. Микроскопический срез заднего спинномозгового ганглия (вверху) и трехмерное изображение первого поясничного сегмента (L1) спинного мозга, на котором показаны парные передние и задние корешки и смешанные (двигательные и чувствительные) спинномозговые нервы (Quain)
Вернемся, однако, к предмету нашего рассмотрения; ясно, что нейроны передают наши осознанные намерения мышцам, но нам надо создать рабочее определение для понятий желания и воли. В этой книге я буду трактовать желание как процесс принятия решения, связанный с сознанием, а волю буду определять как реальную инициацию команд мозговой коры и других участков центральной нервной системы, которые отвечают за руководство нашими действиями. Таким образом, желание – это черный ящик, содержание которого в большой степени неизвестно и в лучшем случае лишь частично доступно экспериментатору. Напротив, природу и содержание воли можно исследовать надежными неврологическими методами.
НейроныНейрон – основная структурная и функциональная единица нервной системы. Несмотря на то что в нервной системе присутствуют клетки и других типов, а именно нейроглия или «глиальные нервные клетки», которые числом превосходят нейроны в десять раз, эти поддерживающие клетки не отвечают, в отличие от нейронов, за передачу информации между отделами нервной системы. Таким образом, объектом нашего интереса будет именно нейрон. Нейрон содержит несколько компонентов: тело клетки с ядром, которое отвечает за рост и развитие клетки, и клеточные отростки, часть из которых достигают значительной длины; именно эти отростки принимают и передают информацию. Отростки нейрона бывают двух типов: дендриты и аксоны. Представьте себе пойманного на крючок осьминога; его восемь щупальцев – это дендриты, а леска, на которой он висит – это аксон. Типичный двигательный нейрон содержит множество дендритов, ответвляющихся от тела клетки. Единственный аксон – леска – может простираться от тела клетки на расстояния от долей сантиметра до 1,2 метра в случае, когда двигательный нейрон находится в спинном мозге, а конец аксона располагается в мышце стопы; длина аксона может достигать 4,5 метра, например, у жирафа. Аксон может иметь ответвления, отходящие от его главного ствола (коллатерали аксона), а все ветви, включая и главный ствол, активно ветвятся по мере приближения к мышце-эффектору.
Специализация дендритов – получение информации от окружающей среды или от других нейронов, а аксон передает информацию в виде нервных импульсов в другие части тела или другим нейронам. Дендриты чувствительных нейронов располагаются в коже, суставах, мышцах и внутренних органах; их клеточные тела находятся в задних корешковых ганглиях, которые располагаются вдоль позвоночного столба, а их аксоны несут сенсорную (чувствительную) информацию в спинной мозг (рис. 1.3–1.9). Дендриты двигательных нейронов расположены в центральной нервной системе, а их аксоны расходятся оттуда (в составе периферических нервов) к иннервируемым мышечным клеткам и железам по всему телу. Между чувствительными и двигательными нейронами расположены так называемые вставочные нейроны, дендриты которых получают информацию от чувствительных нейронов, а аксоны контактируют с другими вставочными нейронами или двигательными нейронами, которые иннервируют мышцы (рис. 1.4). Вставочные нейроны составляют большую часть расположенных в головном и спинном мозге нейронов, включая вторичные и третичные связующие нейроны, которые передают чувствительные сигналы в большой мозг; проекционные нейроны передают двигательные сигналы из большого мозга и мозжечка к промежуточным нейронам, которые контактируют с двигательными нейронами спинного мозга и комиссуральными нейронами, связывающими правое и левое полушарие головного мозга.
Вставочные нейроны согласуют работу всей этой сложной системы. Вы ощущаете стимул и действием реагируете на него, и эту реакцию обеспечивают вставочные нейроны. То есть между ощущением и действием есть дополнительное вставочное звено.
Для того чтобы управлять функциями всего организма, нейроны образуют сети, в которых контактируют друг с другом в точках, называемых синапсами. Синаптические окончания аксонов в этих точках соприкосновения выделяют химические трансмиттерные вещества, которые оказывают действие на дендриты следующего нейрона в цепи (см. рис. 1.4). Первый нейрон называют пресинаптическим, а следующий нейрон – постсинаптическим. Окончание пресинаптического аксона передает информацию постсинаптическому дендриту, но ни в коем случае не наоборот.
В синапсах выделяются медиаторы двух типов: одни медиаторы облегчают активность постсинаптического нейрона; другие подавляют (ингибируют) ее. Тысячи аксонных окончаний могут образовывать синапсы на дендритах одного-единственного постсинаптического нейрона, и уровень активности последнего зависит от общего пресинаптического входа. Чем больше облегчающих медиаторов высвобождается в синапсах постсинаптического нейрона, тем выше будет его активность, что проявляется в повышении частоты нервных импульсов, которые будут переданы по его аксону; чем больше будет выделено в синапсе постсинаптического нейрона тормозных медиаторов, тем меньше будет активность этого нейрона. Например, пресинаптический вход ассоциативных нейронов, образующих синапсы с двигательными нейронами, либо облегчает активность двигательных нейронов, заставляя их посылать по аксону больше нервных импульсов в одну секунду, либо тормозит их активность, и тогда частота нервных импульсов уменьшается. Поза павлина (см. рис. 3.23 г) требует максимального облегчения и наименьшего торможения двигательных нейронов, иннервирующих мышцы живота, глубокие мышцы спины, мышцы, фиксирующие лопатку, и сгибатели предплечья. С другой стороны, мышечная релаксация в позе покойника (см. рис. 1.14) требует снижения интенсивности облегчения и возможного усиления торможения двигательных нейронов в центральной нервной системе (см. рис. 10.1, на котором представлены обобщенные представления о механизмах мышечного расслабления).
Рис. 1.4. Поперечный срез спинного мозга на уровне пятого поясничного сегмента (L5) с сенсорными входами от суставного рецептора, типичным вставочным нейроном и двигательным выходом в клетку скелетной мышцы. Маленькими стрелками указано направление хода нервных импульсов, а также отношение между пре- и постсинаптическими нейронами. Длинные толстые стрелки указывают местонахождение типичного вставочного нейрона в заднем роге спинного мозга и двигательного нейрона в переднем роге спинного мозга
Волевые, произвольные движения реализуются за счет сетей нейронов, дендриты и клеточные тела которых находятся в головном мозге; аксоны этих клеток оканчиваются на двигательных нейронах. Нейроны, расположенные в мозговой коре и направляющие аксоны к двигательным нейронам спинного мозга, носят название «верхние двигательные нейроны», так как они играют главную роль в осуществлении произвольной волевой деятельности. Эти клетки надо отличать от основной массы двигательных нейронов, нижних двигательных нейронов, клеточные тела которых находятся в спинном мозге. Собирательно нижние двигательные нейроны (мотонейроны) называют конечным общим путем, потому что именно их аксоны иннервируют скелетные мышцы. В обиходе под словами «двигательные нейроны» обычно подразумевают именно нижние двигательные нейроны (рис. 1.5).
Паралич нижних двигательных нейронов: вялый параличНаилучший способ понять, как работают проводящие двигательные пути нервной системы, – это исследование неврологических синдромов, возникающих вследствие заболеваний или травм, оказывающих влияние на некоторые аспекты двигательной функции организма. Начнем мы с одного из самых известных заболеваний – полиомиелита, разрушающего нижние двигательные нейроны. Каждый, кто рос в сороковые и в начале пятидесятых годов, помнит эту страшную болезнь. В 1954 году появилась вакцина Солка, и с полиомиелитом было покончено.
Полиомиелит страшен тем, что разрушает нижние двигательные нейроны и лишает мышцы нервных импульсов, исходящих из спинного мозга, что приводит к параличу соответствующих мышц. Воля к произвольным движениям, возникающая в коре головного мозга, отрезана от путей исполнения этой воли, находящихся в спинном мозге, потому что оказывается разрушенным конечный общий путь. В самых тяжелых случаях мышцы становятся совершенно вялыми и расслабленными, и именно поэтому такой вид расстройства называют вялым параличом. То же самое, но в меньшем масштабе, случается, когда повреждается периферический нерв. Разрушение нижних двигательных нейронов или их аксонов в любом месте спинного мозга или повреждение периферических нервов вызывает паралич всех иннервируемых ими мышц. Становятся невозможными произвольные целенаправленные движения.
Рис. 1.5. Верхний и нижний двигательные нейроны. Клеточное тело верхнего двигательного нейрона показано в верхней части рисунка, в коре левого полушария головного мозга, а мишень этого нейрона – клеточное тело двигательного нейрона, аксон которого иннервирует правую четырехглавую мышцу бедра, – находится на правой стороне спинного мозга
Когда повреждаются или разрушаются верхние двигательные нейроны, например, при черепно-мозговых травмах или инсультах, развивается поражение двигательной области коры головного мозга, и больные утрачивают произвольный контроль над движениями, осуществляемыми нижними двигательными нейронами. После такого поражения человек лишается способности к произвольным движениям. Окончательным результатом служит развитие не вялого, а спастического паралича, при котором мышцы становятся ригидными и совершают неконтролируемые судорожные движения. Некоторое подобие двигательной функции сохраняется, потому что другие части нервной системы, не затронутые поражением, тоже посылают аксоны к нижним двигательным нейронам и, таким образом, влияют на двигательную функцию. Проблема, однако, заключается в том, что эти входы не контролируются головным мозгом, и деятельность нижних нейронов растормаживается до такой степени, что скелетные мышцы, соответствующие пораженным участкам, могут находиться в состоянии спастического сокращения. Хотя в большинстве случаев ситуация не бывает столь тяжелой и не приводит к тотальной инвалидности, тяжелый спастический паралич лишь немногим лучше вялого паралича. Правда, в первом случае может сохраняться способность к некоторым активным целенаправленным движениям, но движения эти плохо координированы, особенно если они касаются дистальных мышц конечностей (рис. 1.6).
Поражения спинного мозгаЕсли спинной мозг сильно поврежден на каком-то определенном уровне, то возникают расстройства двух основных типов. Во-первых, сенсорная информация, которая поступает в спинной мозг ниже уровня поражения, не может дойти до коры головного мозга, а следовательно, не ощущается на сознательном уровне. Пациент не чувствует прикосновений, давления и боли, также отсутствует температурная чувствительность в зоне поражения. Во-вторых, двигательные команды коры головного мозга не достигают нижних двигательных нейронов, расположенных ниже области поражения спинного мозга. Эта ситуация становится очевидной при сравнении поражений спинного мозга на разных уровнях: разрушение спинного уровня на уровне грудного сегмента приводит к параплегии – параличу и потере чувствительности в нижних конечностях; нарушение непрерывности спинного мозга на уровне нижней части шейного сегмента приводит к тетраплегии – параличу и потере чувствительности в областях ниже шеи, включая и все четыре конечности (см. рис. 2.12).
Рис. 1.6. Гипотетическая схема, иллюстрирующая, как повреждение небольшого участка головного мозга может нарушить пути, важные для точного контроля активности скелетной мускулатуры, и вызывать спастический паралич. Пунктирными линиями обозначены пораженные системы, а сплошной линией – остальные системы, которые сами утратили способность влиять на точность мышечной активности
Рефлексы
До сих пор мы обсуждали вертикальные нейронные связи, направленные сверху вниз – от намерения к мозговой коре, верхним двигательным нейронам, нижним двигательным нейронам и, наконец, к скелетным мышцам. Но, помимо этого, нам надо рассмотреть еще один, более элементарный феномен, позволяющий исключить из ответа на стимул сознательный выбор. Этот феномен называется рефлексом, неосознанным двигательным ответом на сенсорный стимул. В таком контексте рефлексы не имеют ничего общего с молниеносной реакцией, которая требуется для виртуозной игры на компьютере или при быстром рисовании. Рефлексы – это подсознательная реакция, осуществляемая на уровне спинного мозга.