Но изо всех точек зрения на природу, только та, которая предполагает существование одной материи и одной силы, и совершенное единообразие во всем, является наиболее научной и с наибольшей вероятностью истинной. Бесконечно малый мир, с молекулами и их атомами, вращающимися и движущимися по орбитам, во многом подобно небесным телам, несущими с собой, а вероятно и вращающими вместе с собой, эфир, или другими словами, несущими с собой электростатические заряды, представляется мне наиболее вероятной точкой зрения, и такой, которая правдоподобным образом объясняет большинство из наблюдаемых явлений. Вращение молекул и их эфира вызывает напряжения эфира или электростатические деформации; уравнивание напряжений эфира вызывает движения эфира или электрические токи, а орбитальные движения молекул производят действия электро- и постоянного магнетизма».
Здесь Тесла отрицает двухзнаковое электричество Б. Франклина, не даёт определения природы и источников электричества и общего понятия эфира, а только констатирует факт наличия возможного однознакового электрического эфира. Не определяет он и состояние электрона в молекулах и атомах. Хотя электрон уже был в 1891 году определён Д. Стонеем.
Термин «холодное электричество» стал часто употребляться после открытия Теслой «радиантного излучения» и исследования его свойств его последователями – Э. Грэя и Т. Морея.
Частицы в экспериментах Тесла имеют ничтожно малую массу, о чём говорил сам Тесла.
«Эфирные частицы были крайне подвижными, почти невесомыми в сравнении с электронами, и поэтому могли проникать через вещество с очень маленьким усилием. Электроны же не могли „сравняться“ с эфиром в скорости и проникающей способности. Согласно этой точке зрения, частицы эфира были бесконечно малыми, намного меньшими по размеру, чем электроны. Частицы эфира несли с собой импульс. Их огромная скорость согласовывалась с их безмассовой природой; совокупность этих свойств наблюдалась при их большом количестве. Они двигались со скоростью, превышавшей скорость света, что было результатом их несжимаемости и отсутствия массы. Когда бы ни возникал направленный радиантный импульс энергии, немедленно возникало несжимаемое движение в пространстве ко всем точкам, расположенным на её пути».
Это свойства, которые в быту проявляет и СВЧ – излучение: электрические цепи с использованием «холодного электричества»:
– не нуждается в толстых силовых проводах, т.е. достаточно тонкого двухжильного провода,
– цепь не боится воды, т.е. может работать полностью погруженной в воду,
– цепь не боится коротких замыканий.
СВЧ излучение (или микроволновое излучение) – это электромагнитные колебания с частотой примерно от 300 МГц до 300 ГГц (длина волны от нескольких метров до долей сантиметра). В спектре электромагнитного излучения микроволны расположены между ИК-излучением и радиоволнами. Микроволны широко используются в современных технологиях, например, в линиях связи, беспроводных сетях, микроволновых радиорелейных сетях, радарах, спутниковой и космической связи, медицинской диатермии и лечении рака, дистанционном зондировании Земли, радиоастрономии, ускорителях частиц, спектроскопии, в промышленном отоплении, системах предотвращения столкновений, а также для приготовления пищи в микроволновых печах. Микроволновое излучение большой интенсивности используется для бесконтактного нагрева тел металлических заготовок в промышленности для термообработки металлов, в хирургии – при радиочастотной абляции вен, в радиолокации. Источником СВЧ-излучения для микроволновых печей служит магнетрон. В технологических СВЧ-установках в основном используются магнетроны. Однако находят применение и пролетный клистрон, ниготрон, гиротрон и другие. Доминирующим в развитии технологий СВЧ-обработки следует признать СВЧ-нагрев неживых объектов (материалов, продуктов). Это направление начало особенно интенсивно развиваться в 60-х годах и уже глубоко проникло в промышленную и бытовую сферы.
Свои воззрения на электричество Ломоносов сформулировал в 1756 г. в неопубликованном и сохранившемся в виде тезисов труде «Теория электричества, разработанная математическим путем». В отличие от большинства своих современников Ломоносов полностью отрицает существование особой электрической материи и рассматривает электричество, как форму движения эфира. «Эфирная» теория электричества, разработанная Ломоносовым, явилась новым шагом к материалистическому объяснению явлений природы. Эфирной теории придерживались многие крупнейшие ученые ХIХ в., в том числе и М. Фарадей (1791 – 1867 г.г.).
После открытия в 1785 году закона Кулона изучение электричества окончательно переходит в категорию физической науки.
Таким образом, не раскрыв механизма электризации трением (трибоэлектричество) и не получив его полного понимания, внимание физиков конца ХVIII – начала ХIХ века полностью переключилось на исследование других явлений электричества – гальванизм, электролиз, постоянный и переменный электрический ток и другие. Хотя явление электризации известно с древних времен, до сих пор нет полной картины в понимании механизмов электризации. В ХIХ в. непонимание механизмов электризации оказало существенно негативное влияние на процесс открытия электрона.
Далее наиболее важными работами стали эксперименты по электролизу. Открытие было воспринято как одно из доказательств того что движущееся электричество (электрическое движение) фактически идентично электричеству, обусловленному трением, т. е. статическому электричеству. В 1833 г. Фарадей установил законы электролиза, в основу которых были положены строгие количественные соотношения. Его серия остроумных экспериментов по электролизу послужила убедительным подтверждением идеи, суть которой сводится к следующему: если вещество по своей природе имеет атомную структуру, то в процессе электролиза каждый атом получает определенное количество электричества.
В 1874 году ирландский физик Д. Стоней выступил в Белфасте с докладом, в котором использовал законы электролиза Фарадея как основу для атомарной теории электричества. По величине полного заряда, прошедшего через электролит, и довольно грубой оценке числа выделившихся на катоде атомов водорода Стоней получил для элементарного заряда число порядка 10—20 Кл (в современных единицах). Этот доклад не был полностью опубликован вплоть до 1881 года, когда немецкий ученый Г. Гельмгольц в одной из лекций в Лондоне отметил, что если принять гипотезу атомной структуры элементов, нельзя не прийти к выводу, что электричество также разделяется на элементарные порции или «атомы электричества». Этот вывод Гельмгольца, по существу, вытекал из результатов Фарадея по электролизу и напоминал высказывание самого Фарадея.
В 1891 году Д. Стоней, который поддерживал идею, что законы электролиза Фарадея означают существование естественной единицы заряда, ввел термин – «электрон» следующим образом:
«При электролизе каждой химической связи, которая разрывается, присуще определенное количество электричества, одинаковое во всех случаях… Заряд такой величины связан в химическом атоме с каждой связью… Эти заряды, которые будет удобно называть „электронами“, не могут быть отделены от атома; они не проявляют себя, если атомы находятся в химическом соединении».
Идеи Д. Стонея обогнали свое время и оказались не только не востребованными современниками, но и не понятыми ими.
Значимость его результатов в следующем. Д. Стоней ввел в научный обиход термин – «электрон», под которым понимался носитель электрического заряда неустановленной физической природы (структуры) эквивалентный электрическому заряду, переносимому одновалентным ионом.
В 1892 году Х. А. Лоренц дал первую формулировку своей электронной теории. Электронная теория Лоренца представляет собой максвелловскую теорию электромагнитного поля, дополненную представлением о дискретных электрических зарядах (электронах), как основе строения вещества, под которыми он понимал все заряженные частицы (положительные и отрицательные).
Таким образом, используя термин «электрон» Лоренц вводит новое содержание в его понятие, отличное от понятия, предложенного Д. Стонеем.
В 1899 году Э. Резерфорд опубликовал свои исследования, в которых он дифференцировал радиоактивное излучение на три компонента: альфа, бета и гамма-лучи. Он обнаружил, что излучение содержит один положительно заряженный компонент – альфа, отрицательно заряженный компонент – бета, и нейтральный компонент – гамма.
В 1901 году А. Беккерель измерил отношение величины электрического заряда к массе у β-частиц и установил, что оно такого же порядка, как и для частиц катодных лучей. Он показал, что бета-частицы – это частицы больших энергий, движущиеся с очень большой скоростью.
В 1911 году на основании анализа и статистической обработки результатов экспериментов по рассеиванию альфа-частиц в тонкой золотой фольге, выполненных Гейгером и Марсденом в 1909 году, Э. Резерфорд предложил планетарную модель атома. Согласно этой модели атом состоит из очень маленького положительно заряженного ядра, содержащего большую часть массы атома, и обращающихся вокруг него лёгких электронов.
Представленная хронология научных открытий конца ХIХ и начала ХХ века демонстрирует прежде всего трансформацию физического смысла термина «электрон» – носителя электрического заряда, неустановленной физической природы и структуры, в электрон – элемент электрического атома вещества.
В 1838 году Фарадей, пропуская ток от электростатической машины через стеклянную трубку с воздухом при низком давлении, наблюдал фиолетовое свечение, исходящее из положительного электрода (анода). Это свечение распространялось почти до самого отрицательного электрода (катода) на другом конце трубки. Между светящимся катодом и фиолетовым свечением, исходящим из анода, он обнаружил темное пространство, которое теперь называют «фарадеевым темным пространством».
В дальнейшем в исследовании катодных лучей приняло участие множество знаменитых ученых и изобретателей: К. Варли, У. Крукс, А. Шустер, Г. Герц, Ф. Ленард, Ж. Перрен и других, приведшие к созданию корпускулярной и волновой теорий природы катодных лучей.
Немецкие физики, за редким исключением, были единодушны в утверждении, что катодные лучи представляют собой процесс в эфире – волновая гипотеза Гольдштейна; англичане, начиная с В. Крукса, считают, что они являются потоками частичек вещества. В 1895 г. французский физик Ж. Перрен экспериментально доказал, что катодные лучи – это поток отрицательно заряженных частиц, которые движутся прямолинейно, но могут отклоняться магнитным полем.
В 1894 году к экспериментам с катодными лучами приступил Дж. Дж. Томсон с сотрудниками.
Необходимы были строгие количественные эксперименты, которые дали бы возможность определить отношение заряда к массе для катодных лучей. То, что измерение величины удельного заряда явится решающим фактом, впервые осознал Дж. Дж. Томсон. С 1895 г. он начинает методическое количественное изучение отклонения катодных лучей в электрических и магнитных полях. Итоги своей работы Дж. Дж. Томсон резюмировал в большой статье, опубликованной в 1897 г. в октябрьском номере журнала» Philosophical Magazihe». Существо своих опытов и высказывание гипотезы о существовании материи в состоянии еще более тонкого дробления, чем атомы, Томсон изложил на вечернем заседании Королевского общества 29 апреля 1897 г. Извлечение из этого сообщения было опубликовано в «Electrican» 21 мая 1897 г. Опыты Томсона дали следующие результаты: скорость частиц, возрастающая по мере увеличения разрежения в трубке, чрезвычайно велика, значительно больше средней скорости, приписываемой, согласно кинетической теории, молекулам остаточного газа в трубке (в одном из первых опытов 1897 г. Томсон нашел скорость равной 1/10 скорости света, но через десять лет он получил для нее значение 1/3 скорости света). Кроме того, эта скорость зависит от разности потенциалов, которую проходит заряд. Значение отношения заряда к массе оказалось не зависящим ни от состава остаточного газа, ни от формы трубки, ни от материала электродов, ни от скорости лучей, ни от каких-либо иных физических параметров. Другими словами, отношение заряда к массе есть универсальная постоянная. Значение этого отношения было порядка 107 СГСЭ. Аналогичное отношение было уже подсчитано для иона водорода из данных по электролизу – оно оказалось равным 104 СГСЭ. Дж. Дж. Томсон высказывает мнение, что катодные лучи представляют собой поток весьма малых частиц, движущихся со скоростями, близкими к скорости света, несущими такой же заряд, как и ионы Фарадея, но обладающими массой, которая в 1000 раз меньше массы самого легкого атома, т.е. атома водорода.
Для достоверного вывода необходимо прямое измерение заряда одновалентных газовых ионов. Важность проблемы заставляет взяться за измерение заряда иона самого Дж. Дж. Томсона. Он впервые использует рентгеновские лучи в качестве инструмента физического эксперимента. Интересно отметить, что рентгеновское излучение было результатом исследования свойств катодных лучей. В свою очередь лучи Рентгена сыграли большую роль в изучении частиц, составляющих катодный луч и в открытии спонтанной радиоактивности.
Эксперименты Дж. Дж. Томсона дали среднее значение заряда иона, равное 6,5 x 10—10 СГСЭ. Этот результат и укрепил убеждение Томсона в существовании «материи в состоянии более тонкого дробления».
По существу, единственно, что удалось Томсону добиться – это измерить отношение заряд-масса для неведомых частиц, составляющих катодные лучи. Тем не менее он решился сделать вывод, что эти частицы являются фундаментальными составными частями обычного вещества.
Разъяснение по поводу применения термина «электрон» для обозначения частиц, составляющих катодные лучи, дал Ленард Филипп в своей Нобелевской лекции от 28 мая 1908 г. («О катодных лучах»):
«… необходимо перечислить названия, данные этим частичкам электричества, или центрам состояния: я назвал их, элементарными квантами электричества или, короче, квантами, как и Гельмгольц; Дж. Дж. Томсон говорит о корпускулах, лорд Кельвин об электрионах; но в обиход вошло название, которое предпочли Лоренц и Зееман, электрон».
Величина электрического заряда электрона, протона и других элементарных частиц не определена и в настоящее время.
История открытия электричества – это история ряда ошибок и недоработок, что превратило современную теоретическую физику в сборник сказок, никак не связанную с природой. При исследованиях использовались лишь визуально наблюдаемые параметры системы СИ и СГС, в то время, как основная невидимая движущая сила ускользала от внимания экспериментаторов. Это и породило ошибку нарушения причинно-следственных связей. Невидимая сила порождена магнитными монополями вихронов – источниками зарядов движения, продуктами которой и являются визуально наблюдаемые явления в экспериментах. В этой истории прослеживается основная ошибка теоретиков – замена причины следствием.
Релятивисткая математическая физика конца ХХ и начала ХХI века, не решив проблемы физики прошлых лет о природе материи, доведя теоретическую физику до кризиса, оставляет своим наследникам сказки о Термоядерном реакторе, поисках массы нейтрино и «открытии» бозона Хиггса, теории Большого Взрыва, ОТО, Стандартной модели элементарных частиц и прочее, при этом не имея даже представления о сущности и структуре электрона и других основных элементарных частицах (фотоне, нейтроне и протоне) и совершенно не имея определений о таких физических сущностях, как электрический заряд и масса. Указанные частицы обладают структурой и вечным источником энергии – невидимым магнитным монополем, на что указывали ещё Д. Кили, Н. Тесла и Э. Лидскалнин, но этих великих экспериментаторов КТО ТО намеренно выключил из истории физики, как и других сторонников ЭФИРА.
Атомы электронейтральны, но обладают массой в системе СИ в поле тяготения Земли, поэтому и кластеры из атомов в целом электронейтральны и обладают массой. Ядерная физика определила кулоновский барьер атомных ядер, препятствующий их непосредственным взаимодействиям. Кластеры вещества в целом могут находится в состоянии покоя и поступательно-вращательного движения, а также в состоянии поляризации, возбуждения внутренних полей внешними полями, а также излучением радиоактивных атомов, входящих в кластер, электромагнитным и звуковым излучением. Такие кластеры вещества обладают и новыми свойствами по сравнению с микромиром, такими как плотность, температура, теплопроводность, а также свойствами по отношению к электричеству – проводники, диэлектрики, полупроводники, сегнетоэлектрики, электреты и т. д. Конденсированные состояния вещества проявляют различные свойства и по отношению к магнетизму – ферромагнетики, диамагнетики, пьезомагнетики, парамагнетики и т. д. Кроме того вещества из однородных химических элементов при контакте образуют Двойной Электрический Слой и другие явления.
Воспроизводство6 оболочек структур атомных ядер и оболочек электронов в дискретном микропространстве холодной электрической безмассовой плазмы атома происходит с помощью магнитных монополей (зарядов энергии) замкнутых вихронов, пульсирующих в них с различной частотой. При воспроизводстве и обновлении из источников замкнутых контуров ядерных и атомно-электронных оболочек из гравитационных и электрических зёрен-потенциалов с частотой 1020 – 1023 Гц из них путём однознакового отталкивания-отброса зёрен-потенциалов с помощью магнитных монополей формируются внешние поля (гравитационный, электрический и магнитный эфир) этого кластера, которые в зависимости от их свойств дальнодействия, скорости движения, проникающей способности, выходят наружу его внешней поверхности (гравитация и проявление заряда массы), насыщают объём атомного ядра и концентрируются на его поверхности (проявление заряда электрическим потенциалом на атомном ядре) или равномерно насыщают объём этого атома, определяя его размер и объём. Проявление магнитных свойств стационарных магнитов возможно лишь после поляризации некоторых веществ (ферромагнетики) путём регистрации притяжения или отталкивания движения магнитного потока зёрен в стационарных магнитах – магнитный ток по Лидскалнину.
Заряд электрическим потенциалом производится магнитными монополями, но с двумя противоположными знаками в составе электронов и атомных ядер, образуя встречные потоки электрического эфира с образованием зоны холодной электрической безмассовой плазмы с двумя противоположными знаками, который не имеет такого дальнодействия и проникающей способности, как гравитационный эфир вокруг кластера атомно-молекулярного вещества, и ограничен пределами атома. В атоме электрический эфир взаимно аннигилирует, образуя фиксированное геометрически электрически нейтральное центральное микропространство атома из центра-ядра и сферически объёмных слоёв-оболочек из электронов, удалённых друг от друга на фиксированное расстояние 10—8 см. Поэтому последний всегда находится в атоме в состоянии дистанционного насыщения двух знаковым эфиром и проявляет его электронейтральность. Однако при сильной поляризации или ионизации атомов кластера из конденсированного вещества звуком или электрическим напряжением (технологиями Д. Кили, Н. Тесла, Д. Хатчисона) можно добиться утечки его электрических полей по знаку заряда потенциала из зёрен-электропотенциалов произведённого эфира через дырки во внешней оболочке и последующего его удаления из микропространств атомов, что проявляется в уменьшении объёма занимаемым таким кластером. Это наглядно демонстрируют эффекты Д. Хатчисона с вертикально стоящим бруском металла (фото 1), находящимся в высоковольтном электростатическом поле, который после воздействия на него звука определённой частоты и СВЧ из нескольких трансформаторов Н. Теслы на глазах сдувается по винтовой, как сдувается воздушный шарик.
Фото 1. Эффект Хатчисона с металлическим бруском под действием перекрёстных полей – электростатических, электромагнитных и акустических.
Поясним это явление простым примером. Имеется нейтрон диаметром 10—13 см, который при распаде образует электрон, антинейтрино и протон. Последний, присоединяя холодный электрон, образует при нормальных условиях атом водорода размером уже 10—8 см. Это явление демонстрирует увеличение объёма вещества на основе водорода в 1015 раз. Обратное явление – ионизация электрона с атома водорода, показывает процесс сдувания электрического микропространства холодной плазмы атома водорода. Удалённый кластер электрического эфира способен создавать заряд электрическим потенциалом, а его умелое использование, например, Э. Грэй, создаёт генератор холодного электричества с производством полезной электроэнергии. Дополнительный заряд электрического потенциала, поданный на нейтральный кластер извне концентрируется только на его поверхности (Фарадей и другие). Следовательно – это кластер автономной заряженной материи-субстанции, которой свойственно подвижное перемещение при определённых условиях.
Таким образом кластеры вещества заряженные дополнительным внешним электрическим потенциалом, создают источник заряда электрического напряжения (потенциала), который аккумулируется только на поверхности. Отсюда и характерная картина силовых линий между двумя источниками, для которых, в случае электричества силовые линии заканчиваются на поверхности заряда, а для магнитных и гравитационных – непрерывность силовых линий.
Так как число атомов в этом кластере (поставщика такого смешанного эфира) одинаково для этих процессов, то по массе кластера можно судить и о количественной характеристике объёма произведённого электрического (Фарадей, эксперименты по электролизу) и магнитного эфира. Если кластер превосходит величину планковской массы, то появляется возможность поляризовать внешним полем атомы кластера известными приёмами, а также разделить электрический и магнитный эфир по полюсам. Однознаковый электрический эфир образует стационарно-неподвижные облака-объёмы зарядов электрического напряжения – круглого газоподобного электрического эфира Тесла или световые вспышки-облако молнии. Возможна также поляризация двух противоположных зарядов электрического потенциала из электрических зёрен-потенциалов, концентрирующихся на его диаметрально расположенных поверхностях – М. Фарадей.
Итак имеем устойчивую электрическую форму кластера круглого электрического эфира – заряд электрическим потенциалом из коллектива зёрен-потенциалов одного знака. При всём этом следует отличать полевую форму зарядов энергии (вихревые магнитный и гравитационный монополи) от корпускулированной (электрон, нейтрон, протон и т.д.) и их взаимообратимые квантовые переходы в определённых пороговых условиях. Аннигиляции корпускулированной материи, начиная уже с дейтерия, не происходит – идут ядерно-ионные реакции с рождением более тяжёлых элементов, например, LENR.