banner banner banner
Философия запаха. О чем нос рассказывает мозгу
Философия запаха. О чем нос рассказывает мозгу
Оценить:
 Рейтинг: 0

Философия запаха. О чем нос рассказывает мозгу

Линней и Галлер пробудили дополнительный интерес к обонянию, а развитие исследований в этом направлении возглавил голландский физиолог Хендрик Звардемакер. Его труд «Die Physiologie des Geruchs», вышедший в 1895 году, представляет собой полный обзор теорий обоняния, предложенных его предшественниками и современниками. Звардемакер выделил три типа обонятельных ощущений: чисто обонятельные (reine olfactive Riechstoffe) и два типа смешанных, а именно – обонятельные ощущения, сопровождающиеся либо болью в носу (scharfe Riechstoffe), либо привкусом во рту (schmeckbare Riechstoffe). Он считал, что трудности с изучением чисто обонятельных ощущений связаны с недостатком точных терминов (keine besonderen Namen): запахи обычно идентифицируют по их материальному источнику. Он сравнил эту проблему с описанием цветов в донаучную эпоху. До Ньютона цвета определяли, ссылаясь на классические примеры, такие как кровь для красного цвета. Методическая терминология цветового зрения возникла после открытия светового спектра.

Таким образом, для научной классификации запахов требовалось успешное выделение простых запахов, аналогичных первичным цветам. В то время выделение компонентов запаха было сопряжено с невероятными техническими сложностями. Небольшое загрязнение и различие в концентрации образцов оказывали значительное влияние на их обонятельные свойства. Звардемакеру пришлось пойти другим путем. Он назвал девять первичных классов запахов, описывающих ботанические, химические и физиологические свойства пахучих материалов:

I. Odores aetherei (эфирные запахи; atherische Geruche);

II. Odores aromatici (ароматические запахи; aromatische Geruche);

III. Odores fragrantes (бальзамические запахи; balsamische Geruche);

IV. Odores ambrosiaci (смолисто-мускусные запахи; Amber-

Moschus-Geruche);

V. Odores alicacei (чесночные запахи; Allyl-Cacodyl-Geruche);

VI. Odores empyreumatici (запахи гари; brenzliche Geruche);

VII. Odores hircine (каприловые запахи («запах козы»);

Caprylgeruche);

VIII. Odores tetra (отталкивающие запахи; widerliche Geruche);

IX. Odoresausea (тошнотворные или отвратительные запахи;

Erbrechen erregende oder ekelhafte Geruche).

Пахучие вещества не поддавались планомерной и полной систематизации. Некоторые наблюдения самого Звардемакера находились в противоречии с его же системой, как, например, когда запах нагретого мышьяка напоминал запах чеснока. Кроме того, классификация ароматических веществ еще более усложнилась с развитием методов химического синтеза в конце XIX века.

Ботаники продолжали сортировать пахучие материалы, несмотря на тщетность попыток охватить широчайшее разнообразие запахов. Австрийский ботаник Антон Кернер фон Марилаун считал химическое понимание запахов необходимым, но недостаточным. Запахи имеют в живой природе сложный смысл, который нельзя свести к химической формуле. Например, известны случаи обонятельной мимикрии, когда растения испускают запах, напоминающий запах иных видов и представителей других таксономических групп, чтобы обманом привлечь наивных насекомых к опылению. Фон Марилаун опубликовал свои наблюдения в труде «Естественная история растений, их форм, роста, репродукции и распространения»[31 - Anton Kerner von Marilaun, The Natural History of Plants, Their Forms, Growth, Reproduction (New York: H. Holt and Company, 1895–1896).].

В соответствии с теорией фон Марилауна, принятие или отторжение запахов определяется двумя основными задачами – выживанием и воспроизводством. Соединяя химию и биологию, его система определяла пять первичных химических групп запахов: индолоиды, аминоиды, парафиноиды, бензолоиды и терпеноиды. Функции этих групп определялись по четырем параметрам: описание запаха, химический состав, ботаническое происхождение и ценность. Но даже в представлении фон Марилауна эта схема оставалась несовершенной. Большинство запахов исходит не от отдельных веществ, а от смесей химических веществ. Кроме того, растения в процессе развития или в течение суточных и годовых циклов могут испускать разные запахи. Биологическая классификация запаха предлагала не однозначные, а перекрывающиеся определения.

Однако классификация фон Марилауна оставалась популярной в садоводстве. Активным сторонником идей фон Марилауна был ботаник Джон Харви Ловелл, которому в 1920-х годах было поручено написать серию из семи статей о цветочных запахах для American Bee Journal. В этой серии статей рассматривался целый ряд вопросов, включая общее введение в физиологию человеческого обоняния и его связь со вкусом, классификацию цветочных запахов и систематический обзор влияния цветочных запахов на поведение пчел. Важно отметить вторую статью Ловелла, «Классификацию цветочных запахов», в которой он отмечал условность любой системы классификации в связи с ее практическим применением. Более того, Ловелл отмечал, что классификация запахов подразумевает определенную степень неоднозначности: «Во многих случаях будут возникать разные мнения относительно запаха некоторых цветов». Вероятно, это различие во мнениях связано с тем, что «цветок может источать два запаха, или его утренний запах может отличаться от вечернего»[32 - John Harvey Lovell, Flower Odors and Their Importance to Bees: A Series of Articles, American Bee Journal 15 (1934): 392.].

Другим сторонником фон Марилауна был Фрэнк Энтони Хэмптон. В книге «Запах цветов и листьев» Хэмптон выделил десять категорий и предложил три стандарта для идентификации известных запахов и классификации новых[33 - Frank Anthony Hampton, The Scent of Flowers and Leaves: Its Purpose and Relation to Man (London: Dulau, 1925).]. Первым стандартом было качество запаха (словесное описание), вторым – основное применение в производстве ароматических веществ, таких как эфирные и жирные масла или спирты (растительные экстракты), а третьим – тип цветка (образец).

К середине XX века интерес к таксономической классификации запахов увял. Причиной послужили значительные изменения в биологических науках в XIX и особенно в XX веке. Технологические прорывы и важнейшие открытия в биохимии привели к смещению центра научных интересов. Естественная история уступила место генетическому и экспериментальному исследованию жизни животных и растений. И в этом новом ракурсе в рамках наук о жизни запахи утратили свою объяснительную функцию.

Химический поворот

До XIX века немногие ученые исследовали запахи в качестве химических соединений, разве что в парфюмерии. Парфюмерия – одна из двух древнейших в мире профессий – была делом секретным. История парфюмерии изобилует сказками, и кажется, что ее замысловатую связь с ранней химией трудно распутать. Основные методы парфюмерии представляли собой практическое применение ранней химии. Химия и парфюмерия в значительной степени перекликались в использовании материалов и инструментов, а также в стоящих целях[34 - G. W. Septimus Piesse, The Art of Perfumery, and Method of Obtaining the Odors of Plants (Philadelphia: Lindsay and Blakiston, 1857); Edward Sagarin, The Science and Art of Perfumery (London: McGraw-Hill, 1945); Mandy Aftel, Essence and Alchemy: A Book of Perfume (New York: North Point Press, 2001); Matthias Guentert, The Flavour and Fragrance Industry – Past, Present, and Future, in Flavours and Fragrances (Berlin: Springer, 2007), 1–14.].

Парфюмеры выделяли, перегоняли, смешивали, нагревали, разделяли пахучие вещества и экспериментировали с их наблюдаемыми свойствами. Записи рецептов для создания пахучих веществ и манипуляций с ними восходят к дохристианской эпохе. Первые хроники с описанием масел и помад относятся еще к временам Древнего Египта.

За столетия парфюмеры создали и усовершенствовали разные методики. В процессе экстракции растительный материал подвергали механическому воздействию путем прессования или измельчения. Полученные таким методом субстанции обычно содержали много летучих эфирных масел и стоили недорого, как апельсиновая цедра. Техника дистилляции представляла собой сухую или влажную перегонку: такие материалы, как цветы или древесина, нагревали, а выделявшиеся из них пахучие экстракты собирали путем конденсации. Некоторые цветы, например, жасмин, при дистилляции разрушались. Поэтому более чувствительные материалы подвергали мацерации – процедуре отделения специфических компонентов с помощью растворителей, таких как спирты. Наиболее нежные цветы обрабатывали с помощью анфлеража (абсорбции). Цветы распределяли на рамке, покрытой слоем жира, который на протяжении семидесяти двух часов поглощал их запах. Это был длительный и дорогостоящий метод. Выбор процедуры зависел от цены продуктов, требуемого качества и формы их конечного применения (эфиры, водные растворы, масла, помады или бальзамы). Эти техники парфюмерной практики существовали на протяжении столетий вплоть до XIV века.

Около 1320 года два итальянца сделали важное изобретение, которое отметило начало развития современной парфюмерии: придуманная ими охлаждающая система в форме змеевика облегчала получение крепкого спирта. Парфюмерам это предоставляло невиданные ранее возможности. С появлением концентрированного спирта применение пахучих веществ кардинально изменилось, поскольку спирт разбавляет и расщепляет смеси. Ингредиенты духов можно было разделить и высвободить на нескольких стадиях, а ароматные творения проявляли разные свойства в зависимости от длительности контакта с кожей.

Так родились современные духи. Теперь это была тройная композиция, состоящая из «верхних нот» (ощутимых в первые 15 минут), «средних нот» (или «нот сердца», слышимых на протяжении получаса после испарения «верхних нот») и «базовых нот» (остаточного аромата, длящегося до 24 часов). В эпоху Возрождения случился бум в создании новых и сложных сочетаний запахов. «Венгерская вода», созданная в 1370 году по заказу венгерской королевы Елизаветы, была одним из первых парфюмерных изделий на основе спирта и по сей день остается одним из наиболее удачных ароматов[35 - Andrea B?ttner, Springer Handbook of Odor (New York: Springer, 2017), 4–5.].

О химическом составе запахов было известно мало. Ситуацию изменил пионер современной химии – англо-ирландский ученый Роберт Бойль. В 1675 году Бойль описал серию из двенадцати «Экспериментов и наблюдений о механическом производстве запахов»[36 - Robert Boyle, Experiments and Observations about the Mechanical Production of Odours (London: E. Flesher, 1675).]. Этот краткий отчет, содержавший инструкции для экспериментального воспроизведения, представлял собой часть более обширного критического обзора популярной алхимической доктрины, которую современники Бойля называли tria prima и которую поддерживал Парацельс и его последователи спарагисты. Доктрина tria prima описывала состав веществ в соответствии с тремя принципами: соль воплощала принцип устойчивости и невоспламеняемости, сера – принцип горючести, а ртуть – принцип плавкости и летучести[37 - Lawrence M. Principe, The Aspiring Adept: Robert Boyle and His Alchemical Quest (Princeton, NJ: Princeton University Press, 2000).].

Бойль считал, что химический мир состоит из частиц (корпускул). И запахи не исключение. Однако с ними была связана некоторая неопределенность. Было очевидно, что материалы испускали запахи самых разных типов, менее явным был «принцип испускания запаха». Проблема корпускулярной теории запаха состояла в том, что, несмотря на постоянное высвобождение пахучих частиц, масса источника заметно не сокращалась. Наблюдая на протяжении шести дней за куском асафетиды, Бойль рассуждал так: «Весь кусок не потерял и полчетверти грана; это заставило меня подумать, что, возможно, есть потоки, различимые нашими ноздрями, которые гораздо тоньше, чем благоухающие испарения самих пряностей там»[38 - Robert Boyle, The Philosophical Works of the Honourable Robert Boyle Esq., in Three Volumes, ed. Peter Shaw, vol. 1 (London: W. Innys, R. Manby, and T. Longman, 1738), 412.].

Связаны ли изменения свойств запаха с разными химическими реакциями? Бойль придумал несколько вариантов экспериментов, проверяя роль разведения, тепла или посуды из разных металлов, таких как серебро или золото. Реакции были отчетливыми, измеряемыми и при этом разнообразными. Например, Бойль обнаружил, что сочетание некоторых непахучих веществ приводит к появлению сильного запаха. В другом случае он получил приятный запах из зловонных компонентов. Кроме того, удавалось нейтрализовать или усилить некоторые запахи путем добавления веществ, запаха почти не имевших. Эти эксперименты показали, что появление запахов подчиняется тем же законам, что и другие химические реакции.

В качестве примера приведем одну из инструкций Бойля из «Экспериментов и наблюдений»:

Эксп. I

Из двух материй, обе из которых не имеют запаха, немедленно произвести сильный запах мочи.

Возьмите хорошей негашеной извести и аммонийной соли, разотрите или измельчите их вместе, и вы, поднеся нос к смеси, обнаружите запах мочи, произведенный частицами летучей соли, высвобожденной при этой процедуре, который также попадет вам в глаза и заставит их слезиться.

К XVIII веку корпускулярная теория запаха получила в науке всеобщее признание. Однако запах передающихся по воздуху частиц не объясняли в истинных физических терминах. Считалось, что в восприятии запахов задействованы нематериальные динамические сущности. Наиболее ярко выражала эту идею теория spiritus rector, главным сторонником которой был голландский ботаник, химик и врач Герман Бургаве, учитель фон Галлера.

Бургаве считал, что за восприятие запаха отвечают два элемента, и отделял причину физического явления от ментального опыта. Действующей материей, осуществляющей перенос запаха, были летучие частицы. Однако частицы как таковые в гомогенном виде не объясняли разнообразия запахов. Качество запаха определял spiritus rector («управляющий дух») – невидимое маслянистое вещество, связанное с физическими частицами и действующее в качестве некоей жизненной силы напрямую на разум наблюдателя. Бургаве замечал: «Но маслянистые части в некоторой степени зависимы от этого чувства, поскольку перемещаются совместно с управляющим духом и, прикрепляясь к поверхности обонятельной мембраны, делают результат действия пахучих частиц более постоянным и продолжительным»[39 - Herman Boerhaave, Of the Smelling, in Dr. Boerhaave’s Academical Lectures on the Theory of Physic, vol. 4 (London: W. Innys, 1745), 39–54, 40.]. Запах оставался важнейшим выражением живого мира, выходившим за пределы механических стимулов.

Современное понимание запаха начало формироваться после того, как два французских ученых внимательно исследовали лошадиную мочу. Лошадиная моча, имевшаяся в Европе XVIII века повсеместно и в большом количестве, обладала многими важными экспериментальными характеристиками (яркий цвет, щелочные свойства и едкий запах). Наряду с Лавуазье это были самые известные французские химики того времени – Антуан Франсуа де Фуркруа (зловещим образом причастный к безвременной гибели Лавуазье) и Клод Луи Бертолле. Они выделили из мочи мочевину и идентифицировали ее в качестве источника запаха мочи[40 - Antoine-Fran?ois de Fourcroy, Mеmoire sur l’esprit recteur de Boerhaave, Annales de chimie 26 (1798): 232.]. Другие ученые подтвердили важность этого открытия:

Моча, когда приобретает щелочность, становится такой липкой и вязкой, что может быть разделена на длинные нити. При микроскопическом исследовании в лошадиной моче обнаруживается большое количество округлых частиц, размером от частиц слизи до вчетверо его превышающего, которые разрываются под давлением стеклянных пластинок, между которыми изучают жидкость. Фуркруа и Воклан выпарили лошадиную мочу, выделили мочевину в виде нитрата, нейтрализовали кислоту щелочью и нашли небольшое количество красноватого жира, улетучивающегося на водяной бане, который считается причиной запаха и цвета мочи[41 - Johann Franz Simon, Animal Chemistry with Reference to the Physiology and Pathology of Man, vol. 2 (London: Sydenham Society, 1846), 343.].

В 1828 году немецкий ученый Фридрих Вёлер включил изучение запахов в общие химические исследования с помощью нового эксперимента[42 - Friedrich W?hler, Ueber k?nstliche Bildung des Harnstoffs, Annalen der Physik und Chemie 88, no. 2 (1828): 253–256.]. Он синтезировал мочевину из цианата аммония (CH

N

O). Значение этого синтеза невозможно переоценить. В то время считалось, что поведение органических веществ не описывается правилами, которым подчиняется поведение неорганических веществ: органические вещества подчиняются другим законам и жизненным силам. Вёлер показал, что это не так. Он синтезировал органическое вещество – мочевину – из неорганического соединения, цианата аммония. Органическая и неорганическая химия соединились, в химии произошел сдвиг парадигмы. Это было стартовым сигналом для изучения запахов.

У запаха появилось новое материальное измерение. Шаг за шагом происходила идентификация химического состава пахучих материалов, начали активно развиваться методы синтеза сырьевых и редких материалов. В 1818 году Жак-Жюльен де Лабиллардьер определил, что терпентиновое масло (скипидар) состоит из «соотношения пяти атомов C к восьми атомам H ((C

H

)

)»[43 - G?nther Ohloff, Wilhelm Pickenhagen, and Philip Kraft, Scent and Chemistry: The Molecular World of Odors (Z?rich: Wiley-VCH, 2011), 5.]. Это открытие ускорило анализ состава аналогичных эфирных масел. В 1833 году Жан-Батист Дюма признал, что большинство эфирных масел имеют заметное сходство химического состава[44 - Jean-Baptiste Dumas, ?ber die vegetabilischen Substanzen, welche sich dem Campher n?hert und ?ber einige ?therische ?le, Justus Liebigs Annalen der Chemie 6, no. 3 (1833): 245–258.]. Он разделил эфирные масла на те, которые «содержат только углеводороды, такие как скипидар и лимонное масло, окисленные соединения, такие как камфорное и анисовое масло, или соединения серы (горчичное масло), или азота (масло горького миндаля)»[45 - Ohloff, Pickenhagen, and Kraft, Scent and Chemistry, 5.]. Эжен-Мельхиор Пелиго, Юстус Либих и Отто Валлах собрали еще больше данных о составе и формулах важных для парфюмерии эфирных масел, таких как ментоловое и миндальное масла. Эти открытия происходили параллельно с развитием методов выделения различных компонентов запаха из сырьевых материалов, к числу которых относились вакуумная перегонка и дериватизация – метод для синтеза сходных по структуре веществ из конкретных химических соединений.

За пять последующих десятилетий произошел прорыв в исследованиях синтетических продуктов. В частности, катализатором этого процесса послужил синтез кумарина. Кумарин, впервые синтезированный в 1868 году, пахнет свежескошенным сеном и в природе встречается в бобах тонка (Dipteryx odorata) и в доннике, или сладком клевере (Melilotus). Кумарин был получен с помощью так называемой конденсации Перкина путем соединения салицилового альдегида (C

H

CHO-2-OH) с уксусным ангидридом ((CH

CO)

O). Сэр Уильям Генри Перкин, в честь которого названа эта реакция, также создал первый синтетический анилиновый краситель – сейчас этот розовато-лиловый цвет известен как «мов».

Становление химии ароматических и вкусовых добавок было отмечено синтезом ванилина из кониферилового спирта, осуществленным Фердинандом Тиманом и Вильгельмом Хаарманом в 1874 году. Хаарман понимал, что научный интерес к синтезу пересекается с растущими потребностями индустрии. Вскоре они с Тиманом основали собственную компанию Haarmann’s Vanillinfabrik. В последующие годы эффективность реакций росла, удовлетворяя нуждам крупномасштабного производства искусственных материалов[46 - Ferdinand Tiemann and Wilhelm Haarmann, ?ber das Coniferin und seine Umwandlung in das aromatische Princip der Vanille, Berichte der Deutschen Chemischen Gesellschaft 7, no. 1 (1874): 608–623.]. Хаарман нанял Карла Реймера, который разработал технологию для усовершенствования синтеза ванилина. Метод Реймера оказался очень удачным[47 - Karl Reimer, ?ber eine neue Bildungsweise aromatischer Aldehyde, Berichte der Deutschen Chemischen Gesellschaft 9, no. 1 (1876): 423–424.]. Компания, переименованная в Haarmann&Reimer, быстро разрасталась (намного позже, после слияния с компанией Dragoco, эта фирма стала четвертой по величине парфюмерной компанией Symrise).