Книга 120 практических задач - читать онлайн бесплатно, автор Джейд Картер. Cтраница 3
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
120 практических задач
120 практических задач
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

120 практических задач

return image_dataset

train_dataset = load_dataset(DATA_DIR)

# Шаг 3: Построение генератора

def build_generator():

model = models.Sequential()

model.add(layers.Dense(8 * 8 * 256, use_bias=False, input_shape=(100,)))

model.add(layers.BatchNormalization())

model.add(layers.LeakyReLU())

model.add(layers.Reshape((8, 8, 256)))

assert model.output_shape == (None, 8, 8, 256) # Убедитесь, что выходная форма такая

model.add(layers.Conv2DTranspose(128, (5, 5), strides=(2, 2), padding='same', use_bias=False))

model.add(layers.BatchNormalization())

model.add(layers.LeakyReLU())

assert model.output_shape == (None, 16, 16, 128)

model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))

model.add(layers.BatchNormalization())

model.add(layers.LeakyReLU())

assert model.output_shape == (None, 32, 32, 64)

model.add(layers.Conv2DTranspose(3, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))

assert model.output_shape == (None, 64, 64, 3)

return model

# Шаг 4: Построение дискриминатора

def build_discriminator():

model = models.Sequential()

model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[64, 64, 3]))

model.add(layers.LeakyReLU())

model.add(layers.Dropout(0.3))

model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))

model.add(layers.LeakyReLU())

model.add(layers.Dropout(0.3))

model.add(layers.Conv2D(256, (5, 5), strides=(2, 2), padding='same'))

model.add(layers.LeakyReLU())

model.add(layers.Dropout(0.3))

model.add(layers.Flatten())

model.add(layers.Dense(1, activation='sigmoid'))

return model

# Построение генератора и дискриминатора

generator = build_generator()

discriminator = build_discriminator()

# Определение функции потерь и оптимизаторов

cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

def discriminator_loss(real_output, fake_output):

real_loss = cross_entropy(tf.ones_like(real_output), real_output)

fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)

total_loss = real_loss + fake_loss

return total_loss

def generator_loss(fake_output):

return cross_entropy(tf.ones_like(fake_output), fake_output)

generator_optimizer = tf.keras.optimizers.Adam(1e-4)

discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

# Шаг 5: Построение и компиляция GAN

@tf.function

def train_step(images):

noise = tf.random.normal([BATCH_SIZE, 100])

with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:

generated_images = generator(noise, training=True)

real_output = discriminator(images, training=True)

fake_output = discriminator(generated_images, training=True)

gen_loss = generator_loss(fake_output)

disc_loss = discriminator_loss(real_output, fake_output)

gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)

gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)

generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))

discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))

def train(dataset, epochs):

for epoch in range(epochs):

for image_batch in dataset:

train_step(image_batch)

print(f'Эпоха {epoch + 1} завершена')

# Генерация изображений в конце каждой эпохи

if (epoch + 1) % 10 == 0:

noise = tf.random.normal([16, 100])

generate_and_save_images(generator, epoch + 1, noise)

# Шаг 6: Обучение GAN

EPOCHS = 100

train(train_dataset, EPOCHS)

# Шаг 7: Генерация изображений

def generate_and_save_images(model, epoch, test_input):

predictions = model(test_input, training=False)

fig = plt.figure(figsize=(4, 4))

for i in range(predictions.shape[0]):

plt.subplot(4, 4, i+1)

plt.imshow((predictions[i] * 127.5 + 127.5).numpy().astype(np.uint8))

plt.axis('off')

plt.savefig(f'image_at_epoch_{epoch:04d}.png')

plt.show()

# Генерация изображений после обучения

noise = tf.random.normal([16, 100])

generate_and_save_images(generator, EPOCHS, noise)

```

Пояснение:

1. Импорт библиотек: Импортируются необходимые библиотеки TensorFlow, Keras, numpy и matplotlib.

2. Подготовка данных: Загружаются и подготавливаются данные CelebA. Изображения нормализуются в диапазоне [-1, 1].

3. Построение генератора: Генератор создает изображения из случайного шума. Он включает плотные слои, batch normalization и Conv2DTranspose слои для генерации изображений размером 64x64 пикселей.

4. Построение дискриминатора: Дискриминатор оценивает, являются ли изображения реальными или сгенерированными. Он состоит из свёрточных слоев, слоев LeakyReLU и dropout для классификации изображений.

5. Построение и компиляция GAN: Генератор и дискриминатор объединяются в модель GAN. Определяются функции потерь и оптимизаторы для обеих моделей. Процедура `train_step` выполняет одну итерацию обучения GAN.

6. Обучение GAN: GAN обучается в течение заданного числа эпох. На каждом шаге обучения генератор пытается создать реалистичные изображения, а дискриминатор учится отличать реальные изображения от сгенерированных.

7. Генерация изображений: После обучения GAN, создаются и сохраняются изображения, сгенерированные генератором.

Этот пример демонстрирует, как создать сложную GAN для генерации реалистичных изображений лиц. Модель может быть улучшена за счет добавления дополнительных

9. Развертывание модели в продакшн

Задача: Создание REST API для модели

Развертывание модели машинного обучения в продакшн включает создание REST API, который позволяет клиентам взаимодействовать с моделью через HTTP запросы. В этом примере мы будем использовать Flask, популярный веб-фреймворк на Python, для создания REST API, который может обрабатывать запросы на предсказание с использованием обученной модели.

Шаги:

1. Импорт библиотек и загрузка модели.

2. Создание Flask приложения.

3. Определение маршрутов для API.

4. Запуск сервера.

Пример кода:

1. Импорт библиотек и загрузка модели

```python

import numpy as np

import tensorflow as tf

from flask import Flask, request, jsonify

# Загрузка обученной модели (предполагается, что модель сохранена в формате .h5)

model = tf.keras.models.load_model('path_to_your_model.h5')

```

2. Создание Flask приложения

```python

app = Flask(__name__)

```

3. Определение маршрутов для API

```python

@app.route('/predict', methods=['POST'])

def predict():

# Получение данных из POST запроса

data = request.get_json()

# Преобразование данных в формат, подходящий для модели

# Предположим, что данные представляют собой изображение в виде списка пикселей

image_data = np.array(data['image']).reshape((1, 28, 28, 1)) # Пример для модели, работающей с изображениями 28x28 пикселей

# Выполнение предсказания

prediction = model.predict(image_data)

# Возвращение результата в формате JSON

return jsonify({'prediction': prediction.tolist()})

# Маршрут для проверки работы сервера

@app.route('/')

def home():

return "API для предсказаний работает!"

```

4. Запуск сервера

```python

if __name__ == '__main__':

app.run(host='0.0.0.0', port=5000)

```

Полный пример кода:

```python

import numpy as np

import tensorflow as tf

from flask import Flask, request, jsonify

# Загрузка обученной модели

model = tf.keras.models.load_model('path_to_your_model.h5')

# Создание Flask приложения

app = Flask(__name__)

# Определение маршрута для предсказания

@app.route('/predict', methods=['POST'])

def predict():

# Получение данных из POST запроса

data = request.get_json()

# Преобразование данных в формат, подходящий для модели

image_data = np.array(data['image']).reshape((1, 28, 28, 1)) # Пример для модели, работающей с изображениями 28x28 пикселей

# Выполнение предсказания

prediction = model.predict(image_data)

# Возвращение результата в формате JSON

return jsonify({'prediction': prediction.tolist()})

# Маршрут для проверки работы сервера

@app.route('/')

def home():

return "API для предсказаний работает!"

# Запуск сервера

if __name__ == '__main__':

app.run(host='0.0.0.0', port=5000)

```

Пояснение:

1. Импорт библиотек и загрузка модели: Импортируются необходимые библиотеки и загружается обученная модель TensorFlow/Keras.

2. Создание Flask приложения**: Создается Flask приложение.

3. Определение маршрутов для API:

– Маршрут `/predict` принимает POST запросы с JSON данными, извлекает изображение, делает предсказание с помощью модели и возвращает результат в формате JSON.

– Маршрут `/` просто возвращает сообщение для проверки работы сервера.

4. Запуск сервера: Запускается Flask сервер на порту 5000.

Развертывание на удаленном сервере

Для развертывания на удаленном сервере, таком как AWS, GCP или любой другой хостинг, выполните следующие шаги:

1. Подготовка окружения:

– Установите Python и необходимые библиотеки (Flask, TensorFlow и др.).

– Убедитесь, что у вас есть доступ к модели.

2. Запуск приложения:

– Перенесите скрипт Flask на сервер.

– Запустите приложение, используя команду `python <имя_вашего_скрипта>.py`.

3. Настройка веб-сервера (опционально):

– Для обработки более высокого трафика и обеспечения надежности можно использовать веб-сервер, такой как Nginx или Apache, в связке с WSGI сервером, например, Gunicorn.

– Пример команды для запуска с Gunicorn:

```bash

gunicorn –bind 0.0.0.0:5000 wsgi:app

```

Этот пример демонстрирует, как развернуть модель машинного обучения в продакшн, предоставив к ней доступ через REST API. В реальной среде можно добавить дополнительную обработку данных, аутентификацию, логирование и другие механизмы для повышения надежности и безопасности вашего приложения.

10. Применение ансамблевых методов для улучшения точности модели

Задача: Комбинация нескольких моделей для повышения точности

Ансамблевые методы объединяют несколько моделей для улучшения точности предсказаний по сравнению с использованием одной модели. В этом примере мы рассмотрим два популярных ансамблевых метода: Bagging и Boosting.


Ансамблевые методы

1. Bagging (Bootstrap Aggregating):

– Использует несколько копий одного и того же алгоритма обучения, обученных на различных подвыборках данных.

– Пример: Random Forest, который состоит из множества решающих деревьев.

2. Boosting:

– Построение серии моделей, каждая из которых исправляет ошибки предыдущей.

– Пример: AdaBoost, Gradient Boosting.

Применение ансамблевых методов

1. Bagging: Random Forest

Random Forest состоит из множества решающих деревьев, обученных на различных подвыборках данных. Каждое дерево дает свой прогноз, а итоговый прогноз определяется путем голосования (классификация) или усреднения (регрессия).

```python

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

# Загрузка данных

data = load_iris()

X = data.data

y = data.target

# Разделение на обучающую и тестовую выборки

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# Обучение модели Random Forest

rf_model = RandomForestClassifier(n_estimators=100, random_state=42)

rf_model.fit(X_train, y_train)

# Прогнозирование и оценка точности

y_pred = rf_model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print(f'Точность модели Random Forest: {accuracy:.4f}')

```

2. Boosting: Gradient Boosting

Gradient Boosting строит серию деревьев, где каждая последующая модель пытается исправить ошибки предыдущих моделей.

```python

from sklearn.ensemble import GradientBoostingClassifier

# Обучение модели Gradient Boosting

gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)

gb_model.fit(X_train, y_train)

# Прогнозирование и оценка точности

y_pred = gb_model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print(f'Точность модели Gradient Boosting: {accuracy:.4f}')

```

Ансамблевые методы в комбинации: Voting Classifier

Voting Classifier объединяет предсказания нескольких моделей и принимает решение на основе голосования.

```python

from sklearn.ensemble import VotingClassifier

# Создание ансамбля из нескольких моделей

voting_model = VotingClassifier(

estimators=[

('rf', rf_model),

('gb', gb_model)

],

voting='soft' # 'hard' для мажоритарного голосования

)

# Обучение ансамблевой модели

voting_model.fit(X_train, y_train)

# Прогнозирование и оценка точности

y_pred = voting_model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print(f'Точность ансамблевой модели Voting Classifier: {accuracy:.4f}')

```

Пример с использованием Keras и TensorFlow

Подготовка данных

```python

import tensorflow as tf

from tensorflow.keras.datasets import mnist

from tensorflow.keras.utils import to_categorical

# Загрузка данных MNIST

(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train = X_train.reshape((X_train.shape[0], 28, 28, 1)).astype('float32') / 255

X_test = X_test.reshape((X_test.shape[0], 28, 28, 1)).astype('float32') / 255

# Преобразование меток в категориальный формат

y_train = to_categorical(y_train, 10)

y_test = to_categorical(y_test, 10)

```

Построение моделей

```python

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

def create_model():

model = Sequential([

Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),

MaxPooling2D((2, 2)),

Conv2D(64, (3, 3), activation='relu'),

MaxPooling2D((2, 2)),

Flatten(),

Dense(64, activation='relu'),

Dense(10, activation='softmax')

])

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

return model

# Создание и обучение нескольких моделей

models = [create_model() for _ in range(3)]

for model in models:

model.fit(X_train, y_train, epochs=5, batch_size=64, validation_split=0.1)

```

Ансамблирование моделей

```python

import numpy as np

def ensemble_predict(models, X):

predictions = [model.predict(X) for model in models]

return np.mean(predictions, axis=0)

# Прогнозирование и оценка точности

y_pred = ensemble_predict(models, X_test)

y_pred_classes = np.argmax(y_pred, axis=1)

y_test_classes = np.argmax(y_test, axis=1)

accuracy = np.mean(y_pred_classes == y_test_classes)

print(f'Точность ансамблевой модели: {accuracy:.4f}')

```

Пояснение:

1. Bagging: Random Forest:

– Обучение множества решающих деревьев на различных подвыборках данных и объединение их предсказаний.

2. Boosting: Gradient Boosting:

– Построение серии моделей, каждая из которых исправляет ошибки предыдущей.

3. Voting Classifier:

– Объединение предсказаний нескольких моделей с использованием голосования.

4. Ансамбль с использованием Keras:

– Создание и обучение нескольких моделей нейронных сетей.

– Объединение их предсказаний путем усреднения.

Ансамблевые методы позволяют повысить точность предсказаний за счет комбинирования нескольких моделей, что снижает вероятность ошибки и повышает устойчивость модели к различным типам данных.

11. Классификация новостных статей с использованием RNN

Задача: Категоризация текстов новостей

Для классификации новостных статей с использованием рекуррентных нейронных сетей (RNN) используются модели, способные учитывать последовательный характер текстовой информации. В данном случае мы рассмотрим задачу категоризации текстов новостей, где каждая статья должна быть отнесена к определенной категории на основе её содержания.


Построение модели RNN для классификации новостных статей

1. Подготовка данных

Прежде чем начать построение модели, необходимо подготовить данные:

– Загрузить и предобработать тексты новостных статей.

– Преобразовать тексты в числовой формат, который может быть обработан моделью RNN.

– Разделить данные на обучающую и тестовую выборки.

2. Построение модели RNN

Для классификации текстов можно использовать следующую архитектуру RNN:

– Embedding Layer: Преобразует слова в векторные представления.

– RNN Layer (LSTM или GRU): Обрабатывает последовательность слов, учитывая их контекст.

– Полносвязные слои: Используются для объединения выходов RNN и предсказания категории новости.

Пример кода на Keras для построения модели:

```python

import numpy as np

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Embedding, Dense, SpatialDropout1D

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

from sklearn.model_selection import train_test_split

# Подготовка данных

# Пример загрузки данных (здесь используется вымышленный пример)

texts = ["новость 1 текст", "новость 2 текст", …] # список текстов новостей

labels = [0, 1, …] # метки классов для каждой новости

# Токенизация текстов

max_features = 10000 # максимальное количество слов в словаре

tokenizer = Tokenizer(num_words=max_features)

tokenizer.fit_on_texts(texts)

sequences = tokenizer.texts_to_sequences(texts)

# Паддинг последовательностей, чтобы все они имели одинаковую длину

maxlen = 200 # максимальная длина текста (количество слов в новости)

X = pad_sequences(sequences, maxlen=maxlen)

y = np.array(labels)

# Разделение на обучающую и тестовую выборки

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Построение модели RNN

model = Sequential()

model.add(Embedding(max_features, 128, input_length=maxlen))

model.add(SpatialDropout1D(0.2)) # для уменьшения переобучения

model.add(LSTM(64, dropout=0.2, recurrent_dropout=0.2))

model.add(Dense(1, activation='sigmoid'))

# Компиляция модели

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# Обучение модели

epochs = 10

batch_size = 32

model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test, y_test))

# Оценка точности модели на тестовой выборке

score = model.evaluate(X_test, y_test, batch_size=batch_size)

print(f'Точность модели: {score[1]:.4f}')

```

Пояснение по коду:

1. Токенизация и преобразование текста: Входные тексты преобразуются в последовательности чисел с помощью `Tokenizer` из Keras.

2. Embedding Layer: Слой `Embedding` преобразует числовые индексы слов в векторные представления.

3. RNN Layer (LSTM): В данном примере используется слой LSTM для работы с последовательностью слов. LSTM помогает учитывать долгосрочные зависимости в последовательности.

4. Полносвязные слои: После слоя LSTM следует один или несколько полносвязных слоев для получения финального предсказания категории новости.

5. Компиляция и обучение модели: Модель компилируется с оптимизатором `adam` и функцией потерь `binary_crossentropy` (в случае бинарной классификации) или `categorical_crossentropy` (в случае многоклассовой классификации).

6. Оценка модели: После обучения модели оценивается её точность на тестовой выборке.


Преимущества использования RNN для классификации новостей

– Учет последовательности: RNN эффективно обрабатывает тексты, учитывая контекст и последовательность слов.

– Способность к изучению долгосрочных зависимостей: LSTM (или другие варианты RNN) способны запоминать долгосрочные зависимости в тексте, что полезно для анализа новостных статей.

– Относительная простота в реализации: С использованием библиотек глубокого обучения, таких как TensorFlow или PyTorch, построение и обучение модели RNN становится относительно простым процессом.

Этот подход позволяет создать эффективную модель для категоризации новостных статей, учитывая их содержание и контекст, что является важным инструментом для медиа и информационных агентств.

12. Построение автоэнкодера для уменьшения размерности данных

Задача: Сжатие и восстановление данных

Построение автоэнкодера для уменьшения размерности данных является важной задачей в области глубокого обучения. Автоэнкодеры используются для сжатия и восстановления данных, а также для изучения скрытых представлений входных данных без необходимости размеченных данных. В этом контексте мы рассмотрим, как построить простой автоэнкодер с использованием библиотеки TensorFlow.


Построение автоэнкодера для уменьшения размерности данных

1. Архитектура автоэнкодера

Автоэнкодер состоит из двух основных частей: энкодера и декодера.

– Энкодер: Преобразует входные данные в скрытое представление меньшей размерности.

– Декодер: Восстанавливает данные обратно из скрытого представления.

Для уменьшения размерности используется энкодер, который создает сжатое представление входных данных, содержащее самую важную информацию. Декодер затем восстанавливает данные из этого сжатого представления.

2. Подготовка данных

Прежде чем начать построение модели, данные должны быть подготовлены и нормализованы. Для примера мы будем использовать набор данных MNIST, содержащий изображения цифр от 0 до 9.

3. Построение модели автоэнкодера


Пример кода на TensorFlow для построения простого автоэнкодера:

```python

import tensorflow as tf

from tensorflow.keras.layers import Input, Dense

from tensorflow.keras.models import Model

# Загрузка данных MNIST

(x_train, _), (x_test, _) = tf.keras.datasets.mnist.load_data()

# Нормализация данных (приведение к диапазону [0, 1])

x_train = x_train.astype('float32') / 255.0

x_test = x_test.astype('float32') / 255.0

# Преобразование данных в одномерный вектор (784 пикселя для каждого изображения 28x28)

x_train = x_train.reshape((len(x_train), 784))

x_test = x_test.reshape((len(x_test), 784))

# Размерность скрытого представления

encoding_dim = 32 # выбираем размерность меньше, чем размерность входных данных

# Входной слой автоэнкодера

input_img = Input(shape=(784,))

# Кодирование входных данных в скрытое представление

encoded = Dense(encoding_dim, activation='relu')(input_img)

# Декодирование скрытого представления в выходные данные

decoded = Dense(784, activation='sigmoid')(encoded)

# Модель автоэнкодера, преобразующая входные данные в восстановленные данные

autoencoder = Model(input_img, decoded)

# Компиляция модели с использованием оптимизатора 'adam' и функции потерь 'binary_crossentropy'

autoencoder.compile(optimizer='adam', loss='binary_crossentropy')

# Обучение автоэнкодера

autoencoder.fit(x_train, x_train,

epochs=50,

batch_size=256,

shuffle=True,

validation_data=(x_test, x_test))

# Использование автоэнкодера для кодирования и декодирования данных

encoded_imgs = autoencoder.predict(x_test)

```