Как и ДНК, белок – это молекула, состоящая из выстроенных в цепь простых единиц. В ДНК простейшим звеном может выступать любой из четырех нуклеотидов, а в белке – любая из 20 аминокислот. В каком бы порядке ни располагались нуклеотиды в цепи, двухцепочечная ДНК всегда укладывается в двойную спираль. Структура белков, напротив, определяется их аминокислотной последовательностью. Каждый белок имеет характерное лишь для него расположение аминокислот, а следовательно, и отличную от других трехмерную форму. Схемы и инструменты для постройки белка закодированы в нем же. В белках, пожалуй, ярче всего проявляется принцип самосборки, подразумевающий, что природа кодирует инструкции по организации вещества в самом веществе, затем они активируются и выполняются универсальными физическими силами. Самосборка характерна не только для живых организмов – насыпаемый песок, например, собирается в конусы, наклоненные под определенными углами, а мыльные пузыри оформляются в сферы, – но в биологии она вездесуща. Изучая белки, мы увидим, как силы порождают формы, как этот процесс увенчивается успехом и все же иногда с треском проваливается и как тяжело компьютерам даются геометрические расчеты, с которыми молекулы справляются за микросекунды.
Белки в трех измеренияхАминокислотная цепь в воде изгибается, перекручивается и складывается в специфическую форму. Чаще всего в белках встречаются два варианта вторичной структуры: спирали и листы (на рисунке – слева и справа соответственно).
Я не стал рисовать все атомы в этих структурах, а ограничился лишь несколькими показательными точками и связями между ними. Спиральная и листовая структуры в белковых молекулах настолько распространены, что мы часто изображаем стилизованные формы – плавную спираль диаметром около нанометра (одной миллиардной доли метра) и лист (или слегка складчатый слой) из нескольких тяжей шириной примерно треть нанометра.
Раньше всего, в 1958 году, была открыта трехмерная структура белка миоглобина, который переносит кислород в мышцах. Как и в случае ДНК и многих других молекул, это стало возможно благодаря математическому анализу дифракционной картины, полученной в результате облучения вещества рентгеновскими лучами. Структурой миоглобина занималась в Кембриджском университете группа Джона Кендрю. Для проведения рентгенографии белки нужно перевести в твердое состояние, превратив в кристаллы. Но если кристаллы сахара, например, можно получить на любой кухне, то подтолкнуть белки к кристаллизации не так-то просто даже в современной лаборатории. Сотрудники Кендрю безуспешно экспериментировали с миоглобином морских свиней, пингвинов, морских котиков и других животных, пока не наткнулись на мясо кашалота, очень кстати припасенное в морозильной камере на Кембриджской станции низкотемпературных исследований. (Особенное внимание именно к этой группе животных объясняется тем, что мышцы морских обитателей, дышащих воздухом и погружающихся на большую глубину, содержат очень много миоглобина, который позволяет им запасать больше кислорода и реже всплывать на поверхность.) Белок кашалота формировал «поистине изумительные <…> гигантские кристаллы»1. Изучив их, Кендрю и его коллеги определили, что 153-аминокислотная цепь миоглобина складывается в структуру из восьми спиралей и нескольких неспиральных перемычек, прикрепленную к плоскому небелковому комплексному соединению, в котором атом железа связывается с кислородом (см. рисунок).
Пример белка, состоящего главным образом из листов, мы тоже можем найти в морском мире. Зеленый флуоресцентный белок, GFP, – это светоиспускающий белок, впервые обнаруженный в организме биолюминесцентной медузы. GFP представляет собой цепь из 238 аминокислот, сложенную в бочонок из листов шириной около трех нанометров, внутри которого находится фрагмент молекулы, отвечающий за испускание зеленого света (см. рисунок ниже2). Этот белок не остался простой океанической диковиной. Ученые научились внедрять GFP в бактерии, грибы, растения и даже животных, от плодовых мушек до рыбок данио-рерио, превратив его в своеобразный маяк, метку, позволяющую визуализировать нужные типы клеток и наблюдать, как они растут, движутся и делятся. Кроме того, GFP можно cшивать с интересующими белками, создавая так химерные молекулы-репортеры, за которыми легко следить: по свечению можно узнать, в какой части клетки они находятся, как ведут себя, когда клетки выполняют разные задачи, какие связи устанавливают с другими белками при создании более сложных структур[13]. Сегодня существует богатая палитра производных от GFP либо происходящих из кораллов флуоресцентных белков, испускающих свет всех цветов радуги и носящих названия от незамысловатых («красный флуоресцентный белок») до куда более выразительных («мандарин», «вишня», «слива» – целая серия фруктовых имен). Этот ансамбль лег в основу многоцветной визуализации биологических механизмов, сферы применения которой вышли далеко за пределы морской колыбели этих белков[14]3.
Портреты белковТрехмерная структура белка важна в первую очередь потому, что тесно связана с его химическими или физическими задачами. Так, у GFP бочонок защищает светоиспускающий механизм от гашения водой и растворенным в ней кислородом. Однако следующие примеры покажут взаимосвязь строения и функций белков еще нагляднее.
Тонкие мембраны разделяют клетку на отсеки и отгораживают ее внутреннее пространство от окружающей среды. Особые мембранные белки, часто формирующие структуры в виде бочонка или кольца, обеспечивают сквозной транспорт атомов и молекул. Один из классов таких транспортеров составляют ионные каналы, пропускающие те или иные ионы – заряженные атомы калия, натрия и хлора, например – внутрь или наружу клетки через центральную пору, которая может быть открыта или закрыта. Контролировать поток ионов критически важно. Скольжение вашего взгляда по этой странице и бег мыслей у вас в голове определяются электрическим напряжением мембран (мембранным потенциалом), которое возникает при перераспределении ионов через них. Многие токсины животных, включая змей и скорпионов, действуют именно на ионные каналы, блокируя в итоге нервную систему жертв. На рисунке ниже изображен калиевый канал в поперечном разрезе (подразумеваемая мембрана лежит в плоскости листа)4. Центральной точкой обозначен ион калия, движущийся к нам или от нас, то есть входящий в клетку или выходящий из нее. Канал этот состоит из четырех идентичных молекул белка, которые свободно связываются друг с другом, формируя трансмембранную пору.
Если каналы могут только открываться и закрываться, то другие белки способны на более замысловатые упражнения. На следующем рисунке я изобразил димер из двух молекул белка кинезина5. Как подсказывает его название, этот белок участвует в движении. Молекула кинезина представляет собой длинный стебель, соединенный гибким аминокислотным шарниром с основанием в виде луковицы. Спиральные стебли двух молекул переплетаются и верхними частями специфически прикрепляются к грузу, который необходимо переместить внутри клетки. Грузом могут быть, например, мембранные пузырьки с химическими веществами, которые синтезируются в теле нейрона, а ожидать высвобождения должны на его периферии. Сформированный комплекс моторного белка с грузом проходит по внутриклеточным «рельсам», микротрубочкам, причем проходит в прямом смысле: две округлые ножки по очереди прикрепляются к рельсам и открепляются от них, шаг за шагом приближаясь к пункту назначения[15]. (Эти ножки принято называть головками, а шагающее движение со сменой опережающей ноги – перехватывающим. Да-да, терминология не самая очевидная.) Рельсы тоже состоят из белков – на сей раз способных выстраиваться в жесткие трубочки, – и их трехмерная структура тоже позволяет им выполнять свою работу.
Строение белков влияет на их взаимодействие как друг с другом, так и с веществами иной природы – например, с ДНК. В следующих двух главах мы увидим, что многие белки прикрепляются к ДНК, чтобы руководить считыванием генетической информации. Эти ДНК-связывающие белки должны принимать форму, соответствующую изгибам двойной спирали ДНК. В таких белках часто встречаются спиральные мотивы, способные укладываться в бороздки ДНК. Для примера я изобразил гормон-чувствительную молекулу, называемую глюкокортикоидным рецептором6. (Эти белки работают в парах; широкими спиральными лентами я показал прилежащие к ДНК участки такой пары.) Когда к рецептору прицепляется гормон кортизол, его структура меняется, и только тогда он получает возможность связываться с ДНК и запускать последовательность событий, которая среди прочего подавляет воспалительный иммунный ответ[16]. Вероятно, вы знакомы с кортизолом, под названием «гидрокортизон» входящим в состав мазей, и извлекали пользу из его способности активировать рецепторы: у вас уменьшались покраснение, зуд и отечность от укусов насекомых и контакта с ядовитым плющом или другими раздражителями.
Как мы увидели, структура белка тесно связана с его функцией, однако свою конечную форму он приобретает не сразу. Каждый белок создается клеточными машинами, которые последовательно прикрепляют одну аминокислоту к другой, составляя из них цепочку, как из скрепок. Не существует никакого каркаса, который определял бы укладку такой цепочки, организуя ее в стопки листов, клубки спиралей или другие формы из почти бесконечного многообразия. Белок сам моделирует себя, укладываясь в пространстве должным образом: факторы, определяющие его структуру, зашифрованы прямо в его аминокислотной последовательности. Иными словами, белок осуществляет самосборку.
Каждая из 20 аминокислот обладает определенным набором физических характеристик. Одни аминокислоты заряжены положительно, другие – отрицательно, третьи нейтральны. Одни большие, другие маленькие. Какие-то из них гидрофобные (по сути, жирные) и предпочитают не смешиваться с водой, другие – гидрофильные и легко с ней смешиваются. Представьте белок, в котором подряд идут несколько положительно заряженных аминокислот, затем – цепочка нейтральных гидрофильных аминокислот, а после них – несколько отрицательно заряженных (см. рисунок). Разноименные заряды притягиваются, поэтому, предоставленный сам себе, белок укладывается так, что его противоположные концы сближаются.
Теперь представьте белок, состоящий из гидрофобных (квадратики) и гидрофильных (кружочки) аминокислот. Этот белок окружен водой (преобладающим компонентом внутриклеточной среды) и укладывается так, чтобы гидрофобные фрагменты прятались в центре кольца из любителей воды. Ради ясности я нарисовал эту схемку в двух измерениях. На самом же деле вам нужно представить почти сферическое ядро из гидрофобных аминокислот, окруженное оболочкой из гидрофильных.
В любом реальном белке происходит множество таких взаимодействий между аминокислотами, а также между аминокислотами и окружающей их водой, что порождает силы, вынуждающие белок принять определенную конформацию. Каждый белок синтезируется в клетке как цепочка аминокислот, и эта цепочка укладывается в оптимальную трехмерную форму. По-научному этот процесс называется фолдингом белка
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Примечания
1
Такая температурная отметка называется точкой Кюри. – Здесь и далее прим. ред., если не указано иное.
2
Паттерн (англ. «шаблон», «узор», «схема») – определенный способ организации элементов или процессов (атомов, клеток, экспрессии генов, распределения веществ и т. д.); часто понимается как повторяющаяся устойчивая картина, закономерность.
3
Способность клеток ориентироваться по жесткости или механическим напряжениям окружающей среды называют механочувствительностью. Для нормальных клеток типичен дуротаксис – склонность двигаться по градиенту жесткости, то есть в область среды с более высокой (из-за иного состава внеклеточного матрикса либо клеточного окружения) жесткостью. В случае клеток дотошные ученые чаще говорят не о жесткости (она обычно обусловлена мощным цитоскелетом) или мягкости, а о высоком или низком модуле Юнга («Биомеханика живой клетки», https://biomolecula.ru/articles/biomekhanika-zhivoi-kletki).
4
Дарвин Ч. Происхождение видов путем естественного отбора // Собр. соч. в 9 т. М.: Изд-во АН СССР, 1939. – Прим. перев.
5
Британский биолог Джон Эдвард Салстон (1942–2018) известен прежде всего как исследователь эмбрионального развития модельного червя Caenorhabditis elegans и как одна из центральных фигур в проектах прочтения геномов C. elegans и человека. Нобелевскую премию в 2002 году он получил совместно с Сиднеем Бреннером и Робертом Хорвицем «за открытия, связанные с генетической регуляцией развития органов и программируемой клеточной гибели». Салстон выступал за свободный доступ к научным данным и против патентования генетической информации, считая такой способ извлечения прибыли аморальным.
6
Нуклеотид = нуклеозид (азотистое основание + пятиуглеродный сахар) + фосфатная группа. В ДНК встречается четыре вида азотистых оснований: аденин (А), гуанин (Г), тимин (Т) и цитозин (Ц). Именно ими различаются нуклеотиды, а потому именно по ним мы и «читаем» ДНК (при этом, скажем, под буквой А мы обычно подразумеваем не само основание аденин, а нуклеотид аденозинмонофосфат целиком). Сахар, входящий в состав нуклеотидов ДНК, называется дезоксирибозой. Дезоксирибозы разных нуклеотидов соединяются друг с другом через фосфатные группы в цепочки, формируя остов ДНК (дезоксирибонуклеиновой кислоты), а азотистые основания как бы торчат из него.
7
Эти нити в реальности направлены противоположно друг другу, то есть антипараллельны.
8
Азотистые основания комплементарных цепей взаимодействуют друг с другом с помощью относительно слабых водородных связей.
9
История открытия метода, его суть, вариации и применения подробно и популярно описаны, например, в статье «12 методов в картинках: полимеразная цепная реакция» (https://biomolecula.ru/articles/metody-v-kartinkakh-polimeraznaia-tsepnaia-reaktsiia).
10
Если исходная молекула ДНК – та, что будет служить матрицей для синтеза новых цепей, – очень длинная, целиком ее копировать невозможно. Обычно на основе крупной матрицы намножают (амплифицируют) небольшие фрагменты ДНК.
11
Очевидно, что синтезированные копии ДНК тоже служат матрицами для построения новых молекул, однако амплификация в одной смеси не может длиться вечно: запас рабочей полимеразы, например, истощается примерно к 30-му циклу, и если необходимо, эту же ПЦР-смесь сильно разбавляют, внося новые ингредиенты, кроме исходной ДНК.
12
Этот процесс известен как молекулярное клонирование: амплифицируемую или исследуемую ДНК встраивают в векторы – генетически подправленные для той или иной цели небольшие молекулы ДНК (реже РНК) вирусного, бактериального или эукариотического происхождения. Для множества задач подходят, например, векторы на основе бактериальных плазмид (внехромосомных генетических элементов, способных реплицироваться в бактериях самостоятельно). Векторы защищают встроенный в них генетический материал от разрушения, помогают размножить его и изучить, доставить в нужный тип клеток, синтезировать на его основе полезные белки.
13
Полноразмерный GFP подходит не для всех подобных задач из-за риска искажения естественного поведения сшитых с ним белков.
14
Сориентировать в спектре и практическом применении улучшенных флуоресцентных белков может красочно иллюстрированная статья “Флуоресцентные белки: разнообразнее, чем вы думали!” (https://biomolecula.ru/articles/fluorestsentnye-belki-raznoobraznee-chem-vy-dumali).
15
Свежие представления о механизмах движения кинезина (и очень понятную картинку) можно найти в статье Fei J., Zhou R. Watching biomolecules stride in real time. Science. 2023; 379 (6636): 986–987. Короткая анимация: https://www.youtube.com/watch?v=ilgdFvit49Y.
16
Простая анимация процесса: https://www.youtube.com/watch?v=bvG0pstNyOo.
Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги