banner banner banner
Наноматрицы шунгита: возникновение жизни и восстановление здоровья без лекарств
Наноматрицы шунгита: возникновение жизни и восстановление здоровья без лекарств
Оценить:
 Рейтинг: 0

Наноматрицы шунгита: возникновение жизни и восстановление здоровья без лекарств


Именно в породах Sh -III Зажогинского месторождения впервые в геологических образцах выявлено появление природных фуллеренов под действием лазерного излучения [10]. В этих мягких условиях возможен контакт углерода с расплавленной серой, элементарной серой и нагрев [11]. Такие условия встречались в Шунге, Богемском массиве и даже в Садбери. Элементарная сера могла возникнуть в результате деятельности бактерий, выветривания сульфидов или распада биологического вещества. Природные фуллерены Sh-III отличаются тем, что они могли образоваться в твердом состоянии, хотя большинство искусственных фуллеренов выращиваются из газовой фазы. «Это первый пример твердофазного роста фуллеренов», – заключает профессор R.L. Hettich [11]. Похожая версия происхождения шунгита, активной основой которого является фуллерен, обоснована в [12]: «Шунгит – продукт экстремальной конденсации с полной дегидратацией углеводов, с дальнейшим спеканием с алюмосиликатами, карбонатами и т. п. под воздействием температуры или давления. Сами углеводы могли образоваться в небольших количествах при полимеризации формальдегида» по цепи, рассмотренной в книге «Происхождение и принципы эволюции» [12].

Зажогинское месторождение в Карелии могло стать полигоном дляэволюции, так как для этого было достаточно наличия части шунгита Sh-III под Онежским озером и миллиарда лет контакта Sh-III с водой. При таком длительном контакте с водой происходит прежде всего вымывание алюмосиликатной компоненты Sh-III (см. Главу 4), что влечет за собой последующее диспергирование всех составляющих горной породы, готовых к образованию углеродных супрамолекулярных структур (см. Главу 6). Это важно, потому что в процессе контакта Sh с водой выщелачивается в основном именно алюмосиликатная фаза, которая ответственна не только за первоначальную массовую многостадийную химическую реакцию с водой, но и за последующую дисперсию всех ее элементов в процессе дальнейшего контактирования с водой и экстракцию фуллеренов. Таким образом, при длительном контакте с водой достигается максимально возможная выщелачиваемость, т.е. способность различных элементов, в том числе фуллеренов, содержащихся в Sh, переходить в воду. Адсорбционные характеристики Sh после водной дисперсии возрастают значительно: удельная поверхность более 350 м

/г, объем пор 0.5 см

/г, вместо обычных значений, характерных для Sh (из месторождения Шуньга): 25.9 м

/г, 0.03 см

/г [9, 10].

Обнаруженная нами впервые самоорганизация фуллерено-подобных квази-кристаллических частиц из низкомолекулярного углерода, графенов, графитоподобных пакетов и природных фуллеренов в водном экстракте Sh-III происходит в результате непрерывного процесса самоорганизации этих компонентов на матрице, роль которой в Sh-III играют Наноматрицы. Процесс самосборки наноструктур на основе природных фуллеренов в воде зависит от многих факторов, главными из которых являются состав и дисперсность Sh. Природа за миллиарды лет создала в этом природном нанокомпозите такой оптимальный элементный состав и молекулярную структуру, которые in vitro невозможно репродуцировать. Подтверждением этому является, например, совместное сосуществование в Sh-III кристаллического кремнезема и различных модификаций углерода (графенов, нанотрубок, низкомолекулярного углерода, фуллеренов) высокой реакционной способности. А в нашем случае наноструктуры созданы не искусственно, а самой природой. То, что создано природой не нуждается в улучшении. Неожиданности природа подготовила и на этот раз. Так в отличие от общепринятой точки зрения, наши исследования показали, что определенные модификации Sh-III можно рассматривать как глобулярно организованную углеродную матрицу, включающую в себя высококонцентрированную фуллерен-содержащую сажу и минеральную компоненту. Противоречие между этой моделью и возможностью выделения фуллеренов в водный экстракт проявилось лишь после обнаружения в экстрактах сольватированного и свободного сероуглерода СS

. Таким образом, экстракция идет обычными методами, а низкий выход фуллеренов связан не только с закрытым характером пор, но и с взаимодействием «сажевой» оболочки на фуллеренах с углеродной матрицей. Нужно длительное время контакта Sh-III с водой, либо анодным травлением, или интенсивной механоактивацией и обогащением Sh развалить глобулярную организацию и повысить выход фуллеренов в раствор до 1.0 – 2.0% от массы образца [4]. Ниже воспроизведён возможный способ естественного получения углеродных фуллерено-подобных квази-кристаллических частиц из Sh-III при длительном контакте с водой.

ГЛАВА 3. Сюрпризы шунгита Sh-III – ключевой фактор самоорганизации углеродных фуллерено-подобных квази-кристаллических частиц

3.1. Противоречивые данные о концентрации фуллеренов в шунгитах

Необходимым и достаточным условием естественной самоорганизации фуллерено-подобных квази-кристаллических частиц в процессе длительного контакте Sh-III с водой является уникальные свойства шунгитового углерода С

и достаточная концентрация природных фуллеренов.

Природные фуллерены (С

и С

) были первоначально открыты в процессе исследования механизма формирования молекул углерода [13] в космических условиях, в так называемых углеродных звездах или в ближайшем их окружении. О том, что фуллерены имеются в земной коре, стало известно уже после их открытия, т.е. после присуждения Нобелевской премии 1996 года, вызвавшей небывалый интерес к новой форме существования материи. Правда, содержание их невелико и распределены они весьма неравномерно, поэтому химические исследования земных фуллеренов вряд ли сегодня можно считать полными. Удалось определить время появления исследованных фуллеренов на Земле. Кратер от падения канадского метеорита образовался 1,85 млрд лет назад, в архейскую эру, когда Земля еще была безжизненна, «безвидна и пуста». Другие фуллерены появились гораздо позже.

Горные породы, похожие на Sh, найдены и в других странах: Казахстан, Канада, Индия. Согласно статье в журнале Geological Society of India в 2007 г., фуллерены найдены в горных породах Mangampet. Основные надежды Mineral DevelopmentCorporation связаны с получением чистых фуллеренов из этой горной породы для коммерческих целей. Однако, пока о практических результатах такого производства фуллеренов никаких сообщений нет.

До 1993 г. ни в одной из опубликованных работ не был выявлен свободный углерод в экстрактах на основе неполярных растворителей, традиционных для извлечения фуллеренов из синтетических фуллеренсодержащих саж. После установления факта появления под действием мощного лазерного излучения фуллеренов в ряде высокоуглеродистых Sh [10] и начала систематических работ в этом направлении, концентрация наиболее распространенных С

и С

в экстрактах на основе неполярных растворителей оценивалась от следовых количеств [14, 15] до 0,1% [16]. Низкие оценки концентрации фуллеренов в Sh могут быть обусловлены рядом факторов. Наиболее существенными из них являются как техника измерения, так и ее интерпретация. Например, Mossman [17] подтвердил присутствие фуллеренов в Onaping Formation, Black Tuff из Sudbury, Ontario, но не нашел фуллеренов в высокоуглеродистых Sh из района Онежского Озера в Карелии. Ранее авторы [10] отмечали, что отсутствие природных фуллеренов в Sh, может быть связано с чрезвычайной неоднородностьюпороды. Авторы [17] утверждают: «Альтернативные объяснения включают в себя возможность того, что природные фуллерены не встречаются в Sh, или, что открытие природных фуллеренов в Sh, возможно, было артефактом анализа». Потенциальной проблемой в этих исследованиях является то, что при определенных условиях эксперимента фуллерены могут генерироваться лазерным излучением, искажая полученные результаты. Например, в условиях лазерной абляции (плотность мощности излучения лазера больше, чем 10

Вт/см

), фуллерены могут быть получены из графитового материала. Именно такая ситуация имеет место в [10], где впервые предполагалось наличие фуллеренов в Sh. Плотность мощности в этой работе была достаточной для разложения C

 синтеза C

из сажи. Поэтому эти результаты лишь подтверждают возможность синтеза фуллеренов в C

при внешних воздействиях. Более того, отсутствие калориметрических данных о существовании природных фуллеренов в C

, ограниченное пространство для формирования кристаллического фуллерита и наши данные об глобулярной организации C

являются причиной полагать, что SEM микрофотографии высокого разрешения в работе [10] соответствуют лишь глобулярной организации сажевого углерода.

Напротив, другие исследователи, например, G. Parthasarathy et al. [14] сообщают, что обнаружили природные фуллерены в образцах Sh из Кондопоги, другого месторождения Sh в Карелии (60 км юго-западнее Шуньги). Образец Sh был блестящим и содержал ~10 вес. % углерода. Для обнаружения природных фуллеренов G.Parthasarathy вместо LDI, который, как известно, создает фуллерены под действием лазерного излучения, использовал масс-спектрометр ионов высокой энергии EIMS (electron-impact ionization mass spectrometer). Для большей надежности наличие природных фуллеренов в Карельских Sh проверяли еще с помощью XRD (powder X-ray diffraction) и NMR (

C-nuclear magnetic resonance). Они пришли к выводу, что природные фуллерены (C

и C

, измеренные до ppb) в Sh существуют.

Совершенно другой подход к оценке содержания фуллеренов в Sh использовали в [18]. Относительно низкая концентрация фуллеренов (менее 0,01%) не позволяет рассматривать их как вещество ответственное за каталитические, медико-биологические и водоочистные свойства Sh. В этом случае известные полезные свойства Sh должны связываться с особенностями его структуры, в частности глобулярной организацией углеродного вещества и возможным фуллереноподобием С-глобул. Расчетная оценка предельно допустимой концентрации фуллеренов соответствует аналогичной концентрации в водном экстракте Sh при катодном осаждении совместно с сажевой компонентой. Сравнительный анализ макрофизических величин Sh-1, графита, стеклоуглерода и фуллерита С

допускает присутствие до 50% фуллеренов в составе сажевой компоненты С

. Такая оценка позволяет рассматривать С

как глобулярно организованную матрицу, включающую природную фуллеренсодержащую сажу, а фуллерен – как одну из основных компонент, ответственных за фильтрующие, биоактивные и каталитические свойства Sh. Анализ плотности, пористости и ряда других макрофизических параметров стеклоуглерода, графита, фуллерита С

и Sh-1 указывают [18] на возможность присутствия (до 3%) фуллеренов в C

Хотя споры о том, есть фуллерены в шунгитах или нет, идут до сих пор, природные фуллерены, как нами установлено, не только могут исходно присутствовать в некоторых модификациях горной породы Sh-III, но при определенных условиях, даже синтезироваться в процессе водной экстракции фуллеренов из шунгита Sh-III. При этом, каких фуллеренов будет больше, зависит не только от модификации шунгита и минеральной компоненты, но и от содержащихся в них примесей (главным образом металлических и серы) и типа растворителя.

3.2. Модификации шунгита Зажогинского месторождения

Свойства Sh зависят не только от содержания углерода, но и от минеральной компоненты, которая даже при относительно постоянном содержании углерода может резко различаться по составу в пределах одного небольшого куска. Дальнейшие исследования показали, что одни месторождения Sh действительно содержат фуллерены, в то время как другие – лишь сажистые вещества [19]. Даже Sh-1, в котором с помощью мощного лазерного излучения удалось создать фуллерены [10] и который все считают наиболее перспективным для получения наибольшего количества фуллеренов, мало пригоден для образования гидратированных фуллеренов. Sh-1 в воде не растворяется! Исследования биологической активности гидратированных фуллеренов показали, что они являются мощнейшими антиоксидантами длительного действия. Они оказывают противовирусное, антиамилоидное, противоаллергическое, противоопухолевое, гепатопротекторное, антиатеросклеротическое действие, стимулируют иммунную систему и предупреждают возрастные изменения в организме.

Механизм взаимодействия Sh-III с водой основан на его способности как сильного восстановителя поглощать кислород, активно взаимодействуя с ним в воде и на воздухе. В этом процессе образуется атомарный кислород, который, как подчеркивает «The international recycling symbol», (http://en.wikipedia.org/wiki/Recycling_symbol)является сильнейшим окислителем и окисляет адсорбированные органические вещества до CO

и H

O, освобождая поверхность Нанопорошка для новых актов адсорбции. Появилась уникальная возможность разлагать небольшие концентрации различных органических примесей (гептил, диоксин, лекарства и т.д.), нейтрализовать следы фармацевтических препаратов, которые проходят незамеченными через все современные системы очистки. В природе нет веществ, способных на это, кроме Sh-III.

Выбор нами Sh-III с концентрацией углерода 28—32% определен с одной стороны, их промышленной значимостью, а с другой – постепенным уменьшением механической прочности по мере роста концентрации углерода с 28 до 32% за счет смены типа несущей матрицы с кремнисто-алюмосиликатной – на углеродную. В результате, как следствие получаем наименьшее сопротивление к истиранию, что важно для получения нанопорошков.

Чтобы быстро добиться сохранения и повторяемости уникальных свойств Sh-III, необходимо получение Нанопорошка (размер частиц менее 1 микрона), содержащего природные фуллерены. Нанопорошки позволяют более эффективно взаимодействовать с водой и приводить к образованию гидратированных фуллеренов. Если роль углерода в развитии жизни, как структурной основы всех организмов, общепринята и является неотъемлемой частью эволюции, то роль шунгитового углерода не столь ясна.

3.3. Уникальный шунгитовый углерод C

C

не похож на все известные углеродные материалы: такого неповторимого сочетания практически всех видов углеродных аллотропов нет ни в одной горной породе, кроме карельского Sh-III. Sh-III кроме макро- и микроэлементов, содержит минеральную и углеродную компоненты, включающие примеси алюмосиликатов, карбонатов и сульфидов металлов. Между углеродной и силикатной компонентой существует прочная связь. Такая структура и состав пород сообщают Sh-III ряд необычных физических, химических, физико-химических и технологических свойств. По составу, структуре и свойствам образования Sh-III уникален, а термин «шунгитовый углерод» (C

) закрепился, благодаря его непохожести на все известные углеродные материалы:

– С

представляет собой необычный по структуре природный нанокомпозит – состоящий из двух взаимопроникающих матриц из наноразмерных частиц углерода и кремнезема.

– Минеральная и углеродная матрицы насыщены специфическим (не графитизируемым, т.е. не покрывающим в виде графита) углеродом в некристаллическом состоянии, характеризуемое отсутствием дальнего порядка в расположении атомов.