С другой стороны, влияние неравномерного оседания на туннель следует учитывать на участках, где продольная жесткость туннеля различна. А также на участках, где мягкие и жесткие основания ограничены или даже на слабых основаниях, которые находятся в процессе консолидационного оседания или где консолидационное оседание произойдет в будущем, а также на участках, где толщина мягкого и слабого грунта под туннелем значительно различается.
В этих случаях, когда механика туннеля не ясна, прочность обделки проверяется путем моделирования боковой структуры туннеля, либо путем увеличения вертикального давления грунта, либо путем принудительного смещения пружин основания. При продольной неравномерной осадке туннеля учитывается осадка основания в месте расположения туннеля с помощьюпружин основания, которые моделируют процесс слежения за туннелем при неравномерной осадке основания, и при необходимости принимаются такие меры, как снижение продольной жесткости туннеля, уменьшение осадки за счет усиления основания и увеличение чистого сечения туннеля.
2. Секция соединения туннеля и шахты
В месте соединения туннеля и шахты, поскольку соединяются две разные конструкции, могут легко возникнуть относительные смещения. В качестве альтернативы следует обработать основание шахты, чтобы уменьшить эффект неравномерного оседания. Кроме того, для обеспечения запаса высоты эффективным методом является увеличение поперечного сечения.
(4) Воздействие землетрясений
При рассмотрении последствий землетрясений следует провести тщательные исследования с учетом важности туннеля, его окрестностей, состояния вмещающей породы, сейсмической интенсивности района, в котором он расположен, структуры и формы туннеля и т. д., а также принять необходимые сейсмические меры.
Подземная конструкция значительно менее подвержены землетрясениям, чем наземные из-за ограничений, накладываемых грунтом, и когда толщина покрова туннеля достигает определенного уровня, можно предположить, что туннель и основание генерируют практически одинаковую вибрацию. Однако воздействие землетрясений на туннель сильнее при следующих условиях и требует тщательного изучения.
1. Изменения в конструкции обделки, например, подземные соединения и соединения с шахтами: изменения в структуре туннеля и напряжения в сечении в зонах структурных изменений.
2. Туннели, расположенные в мягком грунте, могут испытывать значительные осадки из-за снижения прочности и бокового движения грунта при сейсмических или других повторяющихся нагрузках, известные как «сейсмическая просадка», которые должны быть специально проанализированы с учетом конкретных условий участка.
3. Когда изменяются условия основания, такие как вид грунта, толщина покровного слоя, глубина залегания коренных пород: деформация продольного основания туннеля различна, и напряжение поперечного сечения возникает в продольном направлении туннеля.
4. Криволинейный участок с резкими поворотами: напряжение участка возникает в осевом направлении из-за резкого изменения направления между направлением падающей сейсмической волны и осевым направлением туннеля.
5. В рыхлых, насыщенных песком основаниях, где существует вероятность разжижения: разжижение может вызвать подъем туннеля и нельзя игнорировать последствия землетрясений.
В частности, во время землетрясений относительно большие напряжения в сечении неизбежно возникают в той части туннеля, где конструкция туннеля соединена с конструкцией шахты, которая полностью отличается от остальной части туннеля, поэтому для уменьшения продольной жесткости этой части туннеля целесообразно предусмотреть гибкие тюбинги или использовать резиновые прокладки или эластичные прокладки между кольцами тюбинга для придания им гибких соединений.
4.1.4. Методика обоснования сейсмопрочности тюбинга
(1) Обоснование устойчивости туннеля и строительного участка
Если туннель находится на участке, где существует риск разжижения грунта из-за давления поровой воды, превышающий статичное, то формируется область подземной циркуляции с потоком, направленным вверх, и он теряет прочность. Что может привести к снижению нагрузки грунта в верхней точке туннеля, к потере его сопротивляемости силе выталкивания, вследствие чего может возникнуть вероятность поднятия туннеля.
(2) Механическое обоснование поперечного направления сечения туннеля
В настоящее время в КНР анализ сейсмостойкости поперечных сечений подземных туннелей по большей части проводится согласно принципу сейсмического коэффициента. Основная исходная точка данного метода – воздействие землетрясений на подземную структуру, по большей части состоящая из двух частей. Первая – вес структуры и перекрывающего слоя породы создают инерционную силу пропорциональную сейсмическому ускорению поверхности, вторая – самопроизвольное увеличение бокового давления, вызываемое землетрясением.
Если весовая плотность туннеля (вес одного погонного метра туннеля/площадь поперечного сечения туннеля) легче или практически тождественна с весовой плотностью вмещающей породы, то обычно это является следствием землетрясения, сопутствующие толчки вызывают серьезные видоизменения, сдвиги вокруг строительного участка, при этом, инерционная сила не принимается в расчет. Аналитический метод сейсмостойкости, основанный на данной концепции, получил название «метод спектров реакции», или «теория коэффициента динамичности». Особенностью теории является принятие во внимание смещений пластов, расположенных в подземных структурах, которые становятся входом землетрясения в структуру. Метод спектров реакции проводит расчеты для смещений расположения участков туннеля. Метод учитывает все смещения или смещенные участки, действующие на туннель, и производит расчеты давления на сечение туннеля и стрелы деформации.
(3) Механическое обоснование продольного направления сечения туннеля
Расчеты сейсмоустойчивости продольного направления сечения туннеля чаще всего основаны на методе спектров реакции. При проведении расчетов, исходя из состояния всех участков туннеля, устанавливается необходимая длина волны. Предполагается, что смещение участков, полученное методом реактивного смещения, является синусоидальной волной, которая действует на туннель и оказывает давление на верх продольного сечения и объем его изменений. Данный метод является часто применяемым методом расчетов.
Что касается жесткости туннеля, необходимо принять во внимание то, что первичное соединение обделки снижает жесткость. Следует учитывать влияние вторичной и последующих обделок. Решение стоит принимать после тщательного планирования структуры туннеля. Необходима проверка проекта на напряжение сечения и стрелы деформации частей первичного и вторичного соединения обделки, напряжение и величину смещения мест соединений вертикальной шахты сечения.
(4) Метод динамического анализа
Для метода спектров реакции и метода сейсмического коэффициента применяют изменяющиеся со временем сейсмическое действие взамен статической нагрузки или замены статического перемещения, затем используют модель статистического расчета для нахождения отклика структуры. Постепенно примеров проведения динамических расчетов с использованием вычислительной модели совместного влияния сооружения и участка становится больше. Если точно определить материал конструкции и нелинейные параметры элементов конструкции, можно применить динамический расчет, чтобы обнаружить динамику каждой части сооружения во время землетрясения. Вследствие нерациональности входасейсмической волны и сложности интерпретации результатов расчетов, а также отсутствия определения окончательного способа расчетов к настоящему времени, метод не достиг уровня полного принятия.
4.1.5. Анализ распределения арматуры тюбинга
1) Насыщенность арматурой бетона для тюбинга в метро (КНР)
За последние 20 лет при использовании проходческих щитов в Китае было построено большое количество веток метро, структурное укрепление которых является характерным, что по большей части отражает достигнутый в КНР уровень проектирования. Для определения насыщенности арматурой тюбингов метро, возводимых с помощью проходческих щитов, изучили различные регионы, качество почвы и возможные диаметры туннелей, проведя исследование содержания арматуры 38 веток метро в 21 городе КНР. По большей части содержание составило 140~210 кг/м3. Самое низкое содержание арматуры наблюдалось в Чунцине, где туннели прорываются в средневыветренных песчаных аргиллитах, и составляло 120 кг/м3. Самое высокое содержание арматуры наблюдалось в Ханчжоу, где алевритовая почва, много отложений глины. В такой мягкой почве сооружение туннелей требует повышенного содержания арматуры, достигающего 253 кг/м3. Данные факты отражены в таблице 4-6.
Таблица 4-6. Исследование содержания арматуры в метро КНР
2) Сравнение различий армирования элементов строительства проходческих пространств метро в КНР и других странах
КНР не часто принимает участие в разработке проектов метро и других строительных объектов за рубежом, поэтому сложно получить большое количество относительно достоверных зарубежных расчетных параметров. Китайская корпорация железнодорожных туннелей получила проект строительства западного сектора красной ветки метро в городе Тель-Авив (Израиль), а также на нее была возложена миссия выполнения генерального подряда работ на данном объекте. Строительство объекта осуществлялось по европейским стандартам, диаметр щитового туннеля составил 7.2 м, толщина тюбинга 0.35 м, основной почвой проходки был мелкий песок, сильно выветренный Kurkar (сходный с песчаником), ГГВ в верхней точке туннеля по проекту – 1 – 8 м, содержание арматуры приблизительно 120 кг/м3. Ниже проведем анализ со сходным проектом в КНР:
(1) Внешний диаметр тюбинга у данного туннеля сравнительно большой, достигает 7.2 м, в КНР за обычный диаметр считается 6 м, 6.2 м, самый большой – 6.7 м.
(2) Толщина тюбинга – 0.35 м, приблизительно такая же, как и в КНР.
(3) Для армирования тюбинга применяют метод сеточного армирования, лицевые и каркасные стойки крепятся вместе, образуя сетку арматуры, обычно арматура монтируется в области болтовых отверстий. В КНР продольную арматуру гнут и приваривают стыковым швом к каркасным стойкам, так образуется арматурный каркас. В верхней части есть болтовые отверстия, болт крепится и соединяется с торцевой поверхностью симметрично распределенного каркаса арматуры. Некоторые тюбинги снабжаются кольцевой арматурой для увеличения сопротивляемости стыков.
(4) Продольная арматура тюбингов – Т14, среднее расстояние между элементами – 150 мм. В КНР применяется продольная арматура диаметром от 16 мм и выше, среднее расстояние между элементами равно 125 мм.
(5) Распределительный арматурный стержень тюбинга равен Т10, среднее расстояние между стержнями – 160 мм. В КНР распределительный арматурный стержень тюбинга равен 12 – 14 мм, среднее расстояние между стержнями – 160 мм.
3) Анализ причин различий
(1) Во время строительства каждой ветки метро в КНР участок строительных работ делится на 3 – 5 отрезков, так удобнее распределять тюбинги между строительными организациями. Обычно, принимая во внимание геологические условия каждой метротрассы и глубины залегания, предоставляются 1 – 4 вида универсальных карт распределения арматуры. Проектные подразделения каждого участка проводят повторные вычисления, исходя из конкретного состояния своего отрезка, и из универсальных чертежей выбирают различное распределение арматуры. Принимается во внимание инклюзивность, часто используемый тип армирования превышает потребности участка.
(2) При внутренних расчетах армирования элементов строительства проходческих пространств метро в КНР обычно прибегают к привычному методу, применяемому в Японии (нагрузка – структурная модель). На красной ветке в городе Тель-Авив применяется метод структуры пласта (скалистый грунт – структурная модель). Первый метод уменьшает твердость соединения тюбингов и увеличивает средний изгибающий момент. Второй метод не учитывает влияние на соединение, а исходит из гомогенности грунтов. С точки зрения расчетного усилия первый способ превосходит второй.
(3) В КНР проектанты, применяя японский метод, проводят анализ внутренних сил. Затем для проведения расчетов несущей способности, объем армирования часто уменьшается соответственно параметру проектных продольных сил, или стандартные параметры продольной силы заменяют проектные. Вплоть до того, что иногда проводятся расчеты плоских изгибов конструкции, что приводит к увеличению объемов арматуры. Однако в туннелях подобной кольцевой структуры продольная сила оказывает сильное итоговое влияние на арматуру. Если не определен такой параметр, как качество почвы, или сложно определить количество интервалов вследствие их чрезмерности, то для вышеизложенного метода проводится расчет количества арматуры.
(4) Строительный цикл сооружения проектов метро в КНР сравнительно короткий, а время геологоразведочных работ еще короче: время исследования одной метротрассы не превышает года. В Тель-Авиве все работы, связанные с геологическими исследованиями и подведением результатов, заняли более 5 лет. Отбросив время на согласование, получим не менее 3 лет, ушедших на сбор данных на месте и исследовательскую деятельность. В КНР инженерные исследования завершают в сжатые сроки, при этом удовлетворяются требования существующих стандартов. Количество образцов внутренних и полевых испытаний в КНР меньше, чем за рубежом. В то же самое время, технический персонал, производящий исследования, испытывает беспокойство по поводу изменчивости подземного инженерного геологического строения. Предоставляемые параметры почвы устаревают, что приводит к отклонениям в сторону в результатах расчета внутренних сил конструкции.
(5) До 2010 года при сооружении строительных проектов метро в КНР использовалась несущая арматура HRB335, проектная прочность которой была низкой. Предел ее текучести по европейским стандартам составляет 400 – 600 MПa. В тождественном по внутренним силам проекте, в КНР используют большее количество стали. С течением экономического и технического развития и прогресса в КНР, свойства арматуры улучшились. В настоящее время по большей части используют несущую арматуру HRB400, с соответствующим пределом текучести – 400 MПa. Не смотря на улучшение технических характеристик арматуры, из-за многолетнего проектирования по инерции, некоторые участки с арматурой в регионах остались без изменений, диаметр арматуры все еще начинается с 16 мм. Данный факт приводит к тому, что в настоящий момент в некоторых районах существующий объем арматуры не уменьшился с улучшением свойств материала. За последние два года в целом ряде проектных организаций обнаружились проблемы. В только построенных тюбингах проходческих пространств, содержание стали снизилось. Например, в Чуньцине, Даляне, Шэньяне и других городах, содержание стальных конструкций уменьшилось до 120 – 135 кг/м3.
4.2. ВОДОНЕПРОНИЦАЕМАЯ КОНСТРУКЦИЯ СВАРНЫХ ШВОВ ТЮБИНГА
В туннелях проходческого типа применяют болтовые соединения, содержится огромное количество стыковых подземных конструкций, вследствие обделки тюбинга и погрешностей монтажа, в торцевой поверхности соединений возникают неровности, что приводит к прерывистости конструкции. В то же самое время смешение пластов приводит к структурной деформации тюбинга туннеля. Накопленные ранее погрешности и деформации приводят к расхождению швов тюбинга, вследствие целого ряда причин швы теряют свои водоизоляционные свойства. В настоящее время невозможно построить полностью водозащищенный туннель.
В настоящее время основными способами гидроизоляции являются: герметичное цементирование тюбинга снаружи, герметичный бетонный тюбинг, водонепроницаемые швы, вторичная герметичная обделка. Все четыре составляющих важны, но, не включая герметичный бетонный тюбинг, самым ключевым пунктом являются герметичные швы тюбинга. Герметичные швы тюбинга достигаются с помощью герметичной уплотнительной прокладки между тюбингами, герметичной подкладки. С внутренней стороны соседнего тюбинга выполняют зачеканенный герметичный шов и крепление болтами, герметизирование монтажного проема. Надежность обеспечивает герметичная уплотнительная прокладка, которая является основой непроницаемости шва. Принцип непроницаемости прокладки заключается в том, что нормальное напряжение контактной поверхности прокладки больше чем давление внутренних вод, оказываемое на тюбинг, и радиальное напряжение в области продольного шва. В проектирование важно количество прокладок на туннель, их форма, размер и материал.
Рис. 4-10. Уплотнительные герметичные прокладки: a) уплотнительная прокладка; b) уплотнительная прокладка СКЭПТ и расширяющаяся при контакте с водой прокладка; c) подходящая по материалу прокладка сечения; d) расширяющаяся при контакте с водой уплотнительная прокладка
4.2.1. Выбор количества уплотнительных прокладок
Согласно исследованиям для обеспечения герметичности швов в подавляющем большинстве случаев используют уплотнительные прокладки в КНР и за рубежом. В туннелях среднего и малого диаметра применяются одиночные прокладки или расширяющиеся при контакте с водой уплотнительные прокладки. В КНР большая часть туннельных пространств имеет большой радиус, в таких туннелях применяются герметичные прокладки или прокладки, валик которой при контакте с водой расширяется. Например, подводный туннель в Токийском заливе (внешний диаметр 13.9 м), Эрресунский мост (внешний диаметр 8.5 м), Шанхайский туннель через Янцзы (внешний диаметр 15 м), мост через залив Ханчжоувань (внешний диаметр 11.3 м), туннель в городе Чанша (внешний диаметр 11.3 м).
Существуют примеры применения двойных прокладок, которые в одинаковой степени проявляются в КНР и зарубежом. Например, Уханьский туннель Чанцзян (внешний диаметр 11 м), туннель Шицзян между Шэньчжэнем и Гонконгом (внешний диаметр 10.8 м), туннель Нанкин Динхуаймень через реку Янцзы (внешний диаметр 14.5 м), старый туннель под Эльбой в Гамбурге (внешний диаметр 13.75 м) и другие. Расположение уплотнительных прокладок в данных туннелях показано на рис. 4-11.
При применении двойных уплотнительных прокладок, можно усилить характеристики герметичности тюбинга, что касается применения герметичной внутренней боковой прокладки, возникают трудности с ее надлежащим распределением, таким образом, защита от воды шва у внутреннего сальника ограничена. В то же время, при монтаже двойной уплотнительной прокладки (особенно для продольных швов) необходимо применить большую силу сжатия при соединении, только при таком условии можно посадить уплотнительную прокладку в канал уплотнения. Возникают трудности при соединении, которые оказывают негативное воздействие, при этом стоимость строительства заметно увеличивается.
Было проведено обследование и изучение уже построенных проходческих щитов малого, среднего и крупного диаметров. Исследования показали, что протекание при применении одинарной прокладки не многим больше, чем при применении двойной прокладки. Рассматривая данную проблему с точки зрения распределения протеканий, утечки обычно проявляются в основном теле тюбинга и его швах, когда обнаруживаются серьезные смещения. Поэтому при грамотном проектировании формы сечения прокладки применяются подходящие для лучшей герметизации материалы, обеспечивающие самогерметизацию тела тюбинга. При строгом контроле качества сборки тюбинга, обычно не применяют двойную защиту, кроме случаев, где наблюдается высокое давление воды на туннель (внешний диаметр у таких туннелей больше 15 м). Что касается туннелей, в которых применяются двойные уплотнительные прокладки, рекомендуется устанавливать герметичное отверстие в промежутке между уплотнительными прокладками. В таком случае, при обнаружении протечек во время эксплуатации, отверстие можно будет залить герметическим составом, герметик запечатает точку утечки в закрытой среде.
4.2.2. Конструкция прокладки
Гидроизоляция прокладки зависит от ее размера и формы. При проектировании прокладки необходимо изучить следующие аспекты.
1) Принципы проектирования прокладок
Величина контактного напряжения зависит от упругости прокладки. Для обеспечения соответствующей силы упругого восстановления необходимо установить требуемый объем прокладки. При чрезмерном увеличении ее объема могут возникнуть трудности при сборке тюбингов. При проектировании прокладки для герметизации тюбингов следует учитывать следующие результаты китайских и международных инженерных и материаловедческих исследований:
(1) Для обеспечения краткосрочной влагостойкости контактное напряжение прокладки должно быть больше расчетного давления воды. Для обеспечения длительной влагостойкости контактное напряжение не должно быть меньше расчетного давления воды. Должно обеспечивать достаточный коэффициент надежности водоизоляции, на стыке не допускаться протечки стыков.
(2) Соответствующий объем прокладки может обеспечить достаточное контактное напряжение и удовлетворять эффекту гидроизоляция швов щита. Превышение объема может вызвать увеличение давления и концентрации напряжения при сборке;
(3) При проектировании следует учитывать размер раскрытия и забега.
(4) Давление домкратов и действующая сила при сборке тюбингов не должны приводить к повреждению торца и угловой части тюбинга. Когда выполнены условия гидроизоляции, необходимо сократить давление на прокладку (общее давление при полном вдавливании уплотнительной прокладки в пазы тюбинга), чтобы обеспечить удобство строительства;
(5) Необходимо учитывать долгосрочную релаксацию напряжения и стрелу остаточной деформации.
2) Определение размера раскрытия и забега стыков тюбингов
При производстве, монтаже и эксплуатации тюбингов проходческого щита на стыке неизбежно возникнут разбеги раскрытия. Его прямые факторы воздействия следующие:
(1) погрешность при производстве тюбинга: ± 2 мм;
(2) погрешность при установке тюбинга: ± 2 мм;
(3) толщина буферного материала: 1~2 мм;
(4) погрешность в работе проходческого щита: ± 5 мм (кольцевой стык);
(5) восприятие продольных усилий, создаваемых щитом во время передвижения: ± 2 мм;
(6) человеческий фактор, воздействие окружающей среды: ± 2 мм;
(7) ошибка измерения площадки контакта прокладки: ± 1 мм.
Рис. 4-11. Две уплотнительные прокладки для гидроизоляции
Под влиянием перечисленных факторов накопляющий максимальный размер раскрытия стыков может составить 8 мм, разбег – 15 мм. В соответствующей литературе также приводится полуаналитический метод расчета допустимого размера раскрытия стыков при определенном давлении воды:
(4-7),
где: Δ – допустимый размер раскрытия кольцевых стыков с гидроизолирующими упругими прокладками при определенном давлении воды (мм);
ρmin – минимальный радиус кривизны продольного прогиба туннеля (мм);
D – внешний диаметр обделки (мм);
B – ширина тюбинга (мм);
Δ 0 – вероятный размер кольцевого стыка при производстве и монтаже (мм);
Δ s – величина последующего раскрытия стыков (мм).
3) Коэффициент надежности и показатель водонепроницаемости
Согласно соответствующей литературе о системе гидроизоляции требования по водонепроницаемости выполняются при коэффициенте контактного напряжения и расчетного давления воды больше 1.15. На практике рекомендуется использовать коэффициент в диапазоне 1.2 ~ 1.4. При увеличении или уменьшении давления воды коэффициент соответственно изменяется.
Показатель водонепроницаемости (то есть величина контактного напряжения) рассчитывается, как коэффициент надежности × расчетное давление воды ÷ коэффициент остаточного напряжения прокладки после снижения напряжения и износа. Выражение выглядит следующим образом:
(4-8),
где σ – расчетный показатель водонепроницаемости (контактное напряжение прокладки), учитывающий величину разбега и раскрытия стыков тюбинга;
К – коэффициент надежности гидроизоляции;
σ w – расчетное теоретическое давление воды;
γ – коэффициент остаточного напряжения прокладки при снижении напряжения и износе материала.