Книга Ключевые технологии и приемы использования щитовых проходческих комплексов при сооружении туннелей - читать онлайн бесплатно, автор Кайжун Хун. Cтраница 8
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
Ключевые технологии и приемы использования щитовых проходческих комплексов при сооружении туннелей
Ключевые технологии и приемы использования щитовых проходческих комплексов при сооружении туннелей
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

Ключевые технологии и приемы использования щитовых проходческих комплексов при сооружении туннелей



Рис. 2-12. Схематическое изображение практического применения проходческого щита MF


Важные преимущества проходческого щита MF:

1. Основное конструктивное исполнение всех строящихся туннелей по-прежнему – круглое, поэтому механическая особенность кругового сечения была сохранена. Упомянутый туннель формируется несколькими независимыми, контролируемыми мелкими круглыми секциями, соединенными между собой. Коэффициент использования малого сечения при разработке выше. Кроме того, исходя из различных геологических условий, производится управление процессом углубления грунта.

2. При планировании линии туннеля доступна большая гибкость при выборе формы его сечения. Например, по мере необходимости можно выбрать горизонтальный или вертикальный проходческий щит MF.


3. Для проведения работ может быть выбран проходческий щит с гидропригрузом или грунтопригрузом.

4. При регулировке скорости и направления вращения каждой из фрез противодействующая сила, действующая на корпус проходческого щита, стабилизирует его положение во время работы, легко исправляя ошибочный уклон.

4) Горизонтально-вертикальный проходческий щит (проходческий щит H&V)

Так называемый проходческий щит H&V ( полное название на английском языке – горизонтальное и вертикальное изменение) представляет собой несколько круглых сечений, которые по мере необходимости комбинируются между собой. Благодаря разработке многочисленных форм сечения туннелей, является особым методом строительства. Проходческий щит H&V можно использовать в строительных работах, как показано на рис. 2-13, спиральный и бифуркационный типы могут одновременно прорывать несколько линий туннелей. Данный способ применения проходческого щита используется в соответствии с условиями строительства и целями применения туннеля, с его помощью, из-за свободного прохождения в толще грунта, можно изменять форму сечения туннеля и его направление. Основной принцип устройства – применение шарнирного соединения вилочного типа, изменяющего направление движения механизма. Механизм позволяет передней части тела проходческого щита самостоятельно вращаться в противоположном направлении. Применение данного вида шарнирного соединения позволяет проходческому щиту создавать крутящий момент, позволяя достигнуть спирального движения вперед.

Проходческий щит H&V имеет следующие преимущества:

1. Специальное шарнирное сочленение изменяет направление механизма, что облегчает контроль над положением и направлением проходческого щита. Приводной механизм и механизм разработки туннеля являются автономными, что позволяет при разном качестве грунта раздельно управлять процессом забоя. Для проведения работ может быть выбран проходческий щит с гидропригрузом или грунтопригрузом.

2. В туннеле под землей можно свободно передвигаться и менять траекторию движения. Благодаря отсутствию необходимости сооружать рабочую шахту, сокращается срок работ и снижается себестоимость.

3. Исходя из необходимости выбора формы сечения, сохранены прекрасные механические свойства проходческого щита моносечения.



Рис. 2-13. Схема устройства проходческого щита H&V


4. При формировании сечения линии туннеля можно не принимать во внимание окружающие препятствия.

5) Сферический проходческий щит

Данный метод использует сферический проходческий щит для ведения строительных работ, как показано на рис. 2-14. Особенностью данного проходческого щита является самовращение сферического тела. Сферическое тело спрятано внутри впереди идущей основной части проходческого щита, внутри сферического тела спроектирован еще один дополнительный проходческий щит. После того, как основной проходческий щит завершает первичные работы по расчищению грунта, вращение сферы изменяет направление туннеля, таким образом осуществляя последующий этап его разработки. Сферический проходческий щит подразделяется на непрерывно движущийся в двух плоскостях сферический проходческий щит (рис. 2-15) и на непрерывно горизонтально движущийся на дальние расстояния сферический проходческий щит (рис. 2-16).



Рис. 2-14. Сферический проходческий щит



Рис. 2-15. Непрерывно движущийся в двух плоскостях сферический проходческий щит


Рассмотрим в краткие основные преимущества данного типа на примере продольно-поперечного сферического проходческого щита:

1. Из-за вертикального расположения рабочей шахты и горизонтального типа проходческого щита, туннель непрерывно разрабатывается дальше. Причина выбора такого типа щита – отсутствие необходимости обдумывать такие технические проблемы как придание жесткости грунту во время погружения и извлечения проходческого щита, утечка воды. При таком методе многократно увеличивается глубина рабочей шахты, повышается безопасность и темпы строительства. Данный тип щита оказывает значительное влияние на сокращение сроков строительства. 2. Влияние вертикально расположенной рабочей шахты на окружающую среду и проседание грунта меньше, по сравнению со стандартным методом проведения строительных работ.



Рис. 2-16. Непрерывно горизонтально движущийся на дальние расстояния сферический проходческий щит


3. Внутреннее пространство и толщина стенок вертикально расположенной рабочей шахты уменьшены, что позволяет сэкономить на ее строительных затратах. 4. Удобный ремонт и замена фрез в процессе разработки туннелей, подходят для сооружения протяженных туннелей. 6) Проходческий щит DOT Бициклический проходческий щит (Double-O-Tube-Metod, сокращенно DOT) относится к одной из разновидностей инженерно-технического метода MF, показан на рис. 2-17. В отличие от метода MF, при данном методе для шламового проходческого щита применяются фрезы в форме спиц. Зубчатое колесо, на котором расположены две фрезы в одной плоскости, образуют проходческий щит для строительства туннелей при помощи бициклического метода. Находящиеся рядом фрезы не соприкасаются и не препятствуют друг другу в проведении работ, каждая из фрез вращается в противоположную сторону, таким образом, осуществляется синхронный контроль.



Рис. 2-17. Бициклический проходческий щит


Площадь выемки бициклического проходческого щита небольшая, поэтому глубина и ширина шахты могут быть уменьшены в процессе строительных работ. Сечения туннеля получаются разнообразными, круговые сечения могут выполняться слева, справа, сверху и снизу в соответствии с окружающими условиями и инженерными требованиями.

7) Проходческий щит с локальным расширением пространства

Данный проходческий щит изображен на рис. 2-18. Проходческий щит с локальным расширением пространства способен провести производственные работы по локальному расширению сечения туннеля в любой его точке. Основные этапы строительного процесса включают нижеследующее:

1. Строительные работы на обычном участке. Вначале проводятся работы, характерные для сооружения туннеля, затем на участке, нуждающемся в расширении, устанавливают специальный тюбинг, между обычным и специальным тюбингами устанавливается направляющее кольцо.

2. Сооружение противодействующих опор для проходческого щита с локальным расширением пространства. Демонтаж ранее сооруженной нижней секторальной отделки блоками на особом участке. После установки ограждающей конструкции приступают к извлечению грунта. При необходимости можно прибегать к укреплению грунта на особом участке. При проходке щита заливаются противодействующие опоры.

3. Создание противодействующей несущей плиты для проходческого щита с локальным расширением пространства. При расширении значительных площадей в тюбинг направляющего кольца устанавливается круглый проходческий щит, который по мере проходки укрупняет тюбинг, в конце концов создавая противодействующую несущую плиту для проходческого щита (исходное основание).



Рис. 2-18. Основные принципы проходческого щита с компрессионным сжатием грунта


4. Установка и проходка для проходческого щита с локальным расширением пространства. На исходном основании устанавливают проходческий щит с локальным расширением пространства, затем проводят значительную выемку грунта для расширения туннеля. Метод позволяет частично расширить туннель в любом месте и на любую длину в зависимости от применения, форма частично расширенного участка остается круглой, поэтому его механические свойства сохраняют лучшие характеристики круглого сечения. Доступно всестороннее нецентральное расширение участков в разных направлениях: сверху, снизу, справа, слева. Если сравнивать данный способ расширения участков со способом открытого котлована или другими, он позволяет в относительной степени снизить затраты и ускорить процесс строительства. Нет необходимости в создании строительной площадки и рабочего колодца, поэтому давление на окружающую среду является минимальным.


2. 4. РИСКИ ПРИ ПРОВЕДЕНИИ ИНЖЕНЕРНЫХ РАБОТ С ПОМОЩЬЮ ПРОХОДЧЕСКОГО ЩИТА


2.4.1. Краткий обзор несчастных случаев при проведении инженерных работ с помощью проходческого щита

Щитовая проходка является одним из самых передовых методов строительства подземных туннелей. С тех пор, как в 1825 году в Великобритании под рекой Темзой Марком Брюнелем был прорыт с помощью неавтоматического проходческого щита прямоугольного сечения первый туннель, по состоянию на 2018 год история применения и развития проходческих щитов насчитывает 193 года. В настоящее время метод щитовой проходки может применяться при строительстве практически в любых гидрогеологических условиях, в мягких или твердых грунтах, при содержании или отсутствии грунтовых вод в почвах, и даже в карстовых образованиях. Обычно в таких случаях допустимо применение проходческих щитов при проведении подземных работ (в особых случаях необходимо применение сопутствующих методов).

Для прокладки первого в мире туннеля с помощью щита, разработанного Брюнелем, потребовалось 18 лет (1825–1843 гг.), длина туннеля составила всего 458 м, при этом во время его строительства произошло пять крупных прорывов воды, во время которых погибло шесть человек. В настоящее время технология строительства туннелей с помощью щитов непрерывно развивается во многих странах мира, но при ее продвижении и применении произошел ряд производственных аварий, которые не только повлияли на график реализации проекта, но и привели к большим экономическим потерям и ненужным жертвам.

Щиты – это специальное оборудование, изготовленное «на заказ» с учетом конкретных особенностей, таких как инженерная геология, гидрогеология, геоморфология, поверхностные сооружения и подземные трубопроводы и сооружения. Данное оборудование является специализированным и отличается от обычного. Ключевыми характеристиками является не только электротехнический дизайн, но и адаптация к различным типам инженерной геологии, почвы являются основой туннельных работ с помощью проходческого щита. Успех строительства с помощью щита зависит в первую очередь от выбора типа щита и уровня квалификации персонала. Правильный выбор типа щита – залог успеха строительства, уровень квалификации персонала – источник успеха строительства.

В 1996 году во время строительства первой ветки метро Гуанчжоу произошло значительное оседание грунта и образование глинистой корки из-за низкой скорости и продвижения, а также сильного истирания фрез, неадаптированость щита к работе в выветрившихся породах привела к обрушению 3–4 зданий.

В 2000 году во время строительства тестового участка второй линии метро в Гуанчжоу пришлось заменить метод щитовой проходки. Из-за первоначально неразумного распределения фрез, фрезы выступали за орган рабочего щита, нарушая последовательность распределения, которое приводило к низкой скорости продвижения, вследствие недостаточного крутящего момента, а также к образованию глинистой корки.

20 ноября 2007 года в Нанкине при проведении работ на линии метро № 2 на участке ТАО4 между станциями Хэцунь и Юаньтун во время подхода проходческого щита к южной оконечности правой ветки, при заходе в шахту, на расстоянии двух метров от рабочего органа щита образовались четыре большие воронки с водой и песком, быстро увеличивающиеся в размерах. Персонал, работающий около входа в шахту, в срочном порядке эвакуировали. В результате был обрушен большой участок земли к югу от станции Юаньтун, зона продольного обрушения составила около 150 м, ширина зоны обрушения – около 20 м, максимальная глубина обрушения – около 6 м, щит остался в обрушенной почве.

6 мая 2011 года на участке между станциями Цзянгодао и Тяньцзинь второй линии метро в Тяньцзине шнековый механизм левой линии был выведен из строя скоплением цемента, на который наткнулся. Когда смотровое отверстие было открыто для проверки, из щели шнекового механизма хлынул поток воды с песком, что привело к обрушению грунта. Результатом явилась локальная деформация и растрескивание листов тюбингов обеих линий, оба проходческих щита были завалены грунтом. С обеих сторон участка Цзяньтянь строительные работы были возобновлены с изменением направления прокладки туннеля, обошлось без человеческих жертв.

Примерно в 23:00 1 января 2015 года в Ухане на 19-м участке третьей линии метро между станциями Шимин чжицзя и Лунту дадао щит продвигался к кольцу 1122 на левой ветке, детектор газов щита подал сигнал о наличии ядовитых газов. После того, как руководитель строительных работ с помощью переносного детектора подтвердил наличие ядовитого газа, руководителями была организована полная эвакуация людей из туннеля. После этого руководитель строительных работ и оператор проходческого щита повторно зашли в туннель с целью выявления дополнительных скрытых угроз. 1 января в 2.20 утра в туннеле прогремел взрыв, в результате которого погибли два человека.

12 февраля 2017 года в Сямыне во время проведения работ на второй линии в районе Хайдун в компрессионной камере понизилось давление и произошло возгорание щита. Троих пострадавших во время инцидента доставили в госпиталь, спасти их не удалось.

7 февраля 2018 года при строительстве первой очереди на 2 линии метро в городе Фошань на одном из участков между станциями Людаоху и Хуюн на правой линии произошел прорыв воды, что вызвало обрушение туннеля и дорожного покрытия, в результате чего 12 человек погибли и 8 получили ранения.

Подводя итоги, заметим, что несчастные случаи при строительстве с помощью проходческого щита происходят постоянно, поэтому необходимо провести анализ рисков работ, проводимых с помощью проходческих щитов. После проведения анализа необходимо разработать меры по предотвращению и контролю рисков при строительстве.


2.4.2. Классификация рисков при строительстве с помощью проходческих щитов

При анализе рисков строительства с помощью проходческого щита принимаются во внимание «сложность геологии», «приспособляемость проходческого щита», «ограниченные знания кадров», иррациональность методов и мер и другие составляющие. Слабые звенья становятся часто причиной несчастных случаев. Поэтому риски при строительстве щитов делятся на три основные категории: геологические риски, риски, связанные с оборудованием и антропогенные риски.

Причины основных рисков, влияющих на строительство с помощью проходческого щита:

(1) Геологические риски – 40%. Подробная геогидрологическая информация является определяющим фактором успеха строительного проекта. С помощью геогидрологической информации определяется целесообразность использования щита, выбор типа щита, его основные характеристики, выбор вспомогательного строительного оборудования и разработка планов действий в чрезвычайных ситуациях.

(2) Риски, связанные с оборудованием, – 30%. Ключевым фактором успеха строительства с использованием проходческого щита является специализирующийся на производстве щитов поставщик, обладающий передовыми технологиями, значительным опытом и надежностью продукции. Щиты требуют профессионального изготовления и обслуживания. Специализированное производство включает в себя передовые технологии и надежное качество. Только при условии использования передовых технологий в производстве, строительство может считаться наиболее безопасным, производительность высокой, что является решающими факторами при соблюдении сроков строительства. Профессиональный сервис включает в себя богатый опыт и специализированное обслуживание. Рискам при строительстве туннелей противостоит богатый опыт, поэтому производители проходческих щитов должны им обладать. Сервисное обслуживание подразумевает техническую поддержку и своевременную поставку запчастей.

(3) Антропогенные риски – 30%. Опытная, грамотно управляемая, профессиональная и эффективная строительная команда является основополагающим фактором успеха строительства методом щитовой проходки. Рискам при строительстве туннелей противостоит богатый опыт, поэтому главным требованием к команде строителей является обладание им. Сжатые сроки реализации проекта строительства с помощью щита требуют управления на научной основе, чтобы в полной мере использовать его эффективность, уменьшить затраты и получить максимальную пользу. Именно поэтому необходимо управление на научной основе. График этапов строительства распланирован очень плотно, эффективные передовые проходческие щиты требуют кадров соответствующего уровня. Кадры являются одним из основных факторов, гарантирующих безопасность, качество и соблюдение сроков строительства, поэтому требуется профессиональная и эффективная команда строителей.

1) Классифицируются три вида рисков при строительстве с помощью проходческих щитов:

(1) Геологические риски.

Основные геологические риски при строительстве с помощью проходческих щитов следующие:

1) Композитные пласты (в основном распространены в Гуанчжоу, Шэньчжэне, Нанкине и т. д.).

2) Богатые водой зоны разломов и дробления (в основном распространены в Гуанчжоу и Нанкине).

3) Карстовые пещеры и земляные гроты (в основном распространены в северной части Гуанчжоу, Фошане, северной части Шэньчжэня и т. д.).

4) Крайне абразивные кремнистые и железистые обломочные породы; (в основном распространены в Гуанчжоу, Нанкине и других районах).

5) Пласты мелкого песка, содержащие водонапорные пласты (в основном распространены в Гуанчжоу, Фошане, Шанхае, Нанкине, Сучжоу, Ханчжоу и т. д.).

6) Почвы с содержанием угля и газа(в основном распространены в Гуанчжоу, западной и южной частях, Ханчжоу, Ухане и т. д.).

7) Сфероидальные, решетчатые или твердые породы с эрозией (в основном распространены в восточной части Гуанчжоу, Шэньчжэне, Нанкине и Пекине).

8) Песчано-гравийные пласты (в основном распространены в районах Шэньяна, Пекина, Чэнду, Наньнина, Наньчана, Сианя и Гуанчжоу).

9) Вязкие почвы и аргиллиты с глинистой коркой, чередование слоев песчаников и аргиллитов – рыхлая почва(в основном в Чунцине, Гуанчжоу, Шэньчжэне, Наньчане, Хэфэе и других районах).

(2) Риски, связанные с оборудованием.

Основные риски, связанные с оборудованием при строительстве с помощью проходческих щитов следующие:

1) Нерациональный выбор типа щита или его функциональные дефекты, в основном возникающие из-за ошибки в выборе типа. При неправильной конфигурации фрез и выборе их формы, остатки почвы застревают в установке, сразу же блокируют систему, под давлением просачиваются в тело щита.

2) Имеются повреждения коренного подшипника или герметизации.

3) Повреждения забойного органа щита (поломка, трещина, износ), износ фрез.

4) Повреждение коробки редуктора или системы зубчатой передачи.

(3) Антропогенные риски.

Основные антропогенные риски при строительстве с помощью проходческих щитов следующие:

1) Ограниченность сознания, проявляющаяся в невозможности всесторонне понять изменчивый характер почвы и рабочие характеристики щита.

2) Слабая организация строительства и низкое чувство ответственности.

3) Нерациональный проект строительных работ и проводимых мероприятий.

2) Из всего перечисленного можно выделить 11 основных рисков щитового строительства:

(1) Точность геологического исследования.

Точность геологического исследования особенно важна при строительстве туннелей с помощью проходческих щитов. Точное геологическое исследование строительного участка туннеля является решающим фактором при выборе типа щита. Горизонт почвенных вод, прочность горной породы при сжатии и физические свойства почвенного слоя определяют выбор типа и конфигурацию щита. В настоящее время при проведении геологоразведочных работ чаще всего через каждые 30 м производится наметка под отверстие, но в зависимости от требований интервал может быть сокращен до 10 м (геологические риски).

(2) Геологическая пригодность щита.

Геологическая пригодность щита оценивается экспертами до начала строительства, чтобы убедиться, что щит соответствует требованиям проекта. Выбирается тип щита с гидропригрузом или грунтопригрузом, конструкция рабочего органа щита и фрез, двигательная система, возможности маневрирования и т. д. Выбор типа щита является ключевым вопросом в строительстве с помощью проходческого щита (риски, связанные с оборудованием).

(3) Вход и выход проходческого щита.

Вход и выход щита является вопросом, требующим решения в первую очередь в процессе строительства. Входную область необходимо укрепить арматурой согласно требованиям проекта, после этого необходимо проверить результаты укрепления и его равность через скважину. Только после удовлетворения необходимых требований можно приступать к операциям с входом щита. При входе щита (достижении определенной точки ил приеме) процедура та же. Если же результаты укрепления не удовлетворительные, не стоит проводить операции по входу и выходу щита, это может провести к обрушению отверстия. Входное и выходное отверстия для щита должны быть усилены так, чтобы соответствовать проектным требованиям по прочности, ширине, длине и глубине. Контроль за положением щита также необходим для плавного входа и выхода щита (на первый взгляд – геологический риск, но на самом деле это антропогенный риск).

(4) Устойчивость забоя.

Важным показателем того, насколько хорошо построен туннель, является степень его воздействия на окружающую среду, и это особенно проявляется при прокладке туннелей в городских районах, где контроль за выемкой грунта в процессе строительства является ключевой технологией, влияющей на его качество. Если опорное давление слишком низкое, большое количество грунта забоя попадет в камеру давления, вызывая чрезмерное оседание грунта и даже его обрушение. Если опорное давление слишком высокое, оно легко вызовет поднятие поверхности, что негативно повлияет на сооружения в округе. В то же время среда в напорной камере подвержена колебаниям опорного давления из-за ранее существовавших стратиграфических условий, происходит дополнительное влияние на устойчивость забоя (геологический риск + антропогенный риск).

(5) Нарушение герметизации в хвостовой части щита.

Вероятность возникновения риска разрушения при нарушении герметизации в хвостовой части щита считается низкой, но если нарушение произойдет, то может иметь серьезные последствия, если своевременно не принять меры. Если глинистая вода проникнет в туннель через щель в уплотнении хвостовой части щита, произойдет сильная осадка грунта из-за вымывания. Если работы будут проводиться под рекой, произошедший обвал дна может повлиять на строительства всего туннеля. Поэтому, если такой риск возникает, необходимо принять эффективные контрмеры для его устранения. Если строительство ведется под водой, то при необходимости применяют метод замораживания для восстановления герметичности (риски, связанные с оборудованием).

(6) Проходка на твердых и слабых грунтах.

Крайне трудно контролировать расположение туннелепроходческого щита при выполнении работ в твердых и слабых грунтах, которые разнятся между собой по различным характеристикам. В соответствии с геологическими особенностями можно контролировать работу гидроцилиндра, в твердых участках добавить давление, в участках со слабым грунтом, наоборот, убавить.