Все работает. Принято говорить, что в таком случае батарейки подключены параллельно, а не последовательно. Общее напряжение равно 1,5 вольта, как и у каждой батарейки по отдельности. Лампочка горит не слишком ярко, зато батарейки проработают вдвое дольше.
Принято считать, что батарейка подает ток в электрическую цепь. Аналогично можно думать, что электрическая цепь открывает путь для химических реакций в батарейке, которые продолжаются, пока весь химикат в ней не будет израсходован, после чего батарейку нужно выбросить или перезарядить.
Электроны попадают от отрицательного полюса к положительному, проходя через провода и лампочку. Зачем нужны провода? Не может ли электричество передаваться просто по воздуху? И да, и нет. Да, электричество передается по воздуху (особенно если воздух влажный), поэтому и возникают молнии. Но электричество течет по воздуху «неохотно».
Некоторые вещества проводят электричество существенно лучше, чем другие. Это связано со строением атома. Электроны вращаются вокруг ядра на разных энергетических уровнях, которые называются оболочками или орбиталями. Если у атома на внешней оболочке всего один электрон, он легко его отдает, – как раз это и нужно для передачи электричества. Такие вещества хорошо проводят электричество, поэтому их называют проводниками. Лучшие проводники – медь, серебро и золото. Не случайно эти элементы расположены в одном и том же столбце периодической системы. Медь – самое распространенное сырье для изготовления проводов.
Свойство, противоположное электропроводимости, называется сопротивлением. Некоторые вещества сильнее сопротивляются току, нежели другие, – это резисторы. Если вещество обладает очень высоким сопротивлением, практически не проводит электричество, его называют диэлектриком (изолятором). Резина и пластик – хорошие изоляторы, вот почему из них часто делают оболочку для проводов. Ткань и дерево, сухой воздух тоже хороши в таком качестве. Однако при достаточно высоком напряжении практически любой материал приобретает электропроводимость.
Сопротивление меди невелико, но оно присутствует. Чем длиннее провод, тем выше его сопротивление. Если бы вы попытались зажечь фонарик с проводами длиной в несколько километров, то их сопротивление оказалось бы чрезмерным, и фонарик бы не работал.
Чем толще провод, тем ниже его сопротивление. Это может показаться нелогичным. Кажется, что чем толще провод, тем больше нужно электричества, чтобы его «наполнить». На самом деле в толстом проводе доступно гораздо больше электронов, образующих электрический ток.
Я уже говорил о напряжении, но не дал определения этому явлению. Напряжение батарейки составляет 1,5 вольта. Что это значит? Напряжение, измеряемое в вольтах (единица напряжения названа так в честь графа Алессандро Вольта (1745–1827), который в 1800 году сконструировал первую батарею), – это одна из самых сложных концепций в элементарной электротехнике. Напряжение описывает потенциал для выполнения работы. Напряжение существует независимо от того, подключены ли к батарее какие-либо приборы.
Возьмем, к примеру, кирпич. Когда он лежит на полу, его потенциальная энергия очень мала. Она увеличится, если вы поднимете кирпич на высоту метр двадцать от земли. Чтобы высвободить потенциальную энергию, достаточно отпустить кирпич. Если забраться на крышу высокого здания и поднять кирпич, его потенциальная энергия будет еще больше. Во всех трех случаях вы держите кирпич, сам он ничего не делает, но потенциал его отличается.
Гораздо проще определить, что такое ток. Сила тока зависит от того, сколько электронов мчится по проводнику. Сила тока измеряется в амперах, названных так в честь Андре Ампера (1775–1836). Чтобы достичь силы тока в один ампер, через поперечное сечение проводника нужно пропустить 6 240 000 000 000 000 000 электронов в секунду.
Здесь уместна аналогия с водой, текущей по трубам. Ток подобен объему воды, проходящему через трубу в единицу времени, напряжение – давлению воды. Сопротивление можно сравнить с шириной трубы: чем уже труба, тем выше сопротивление. Таким образом, чем выше давление, тем больше воды проходит через трубу, чем меньше сечение трубы, тем меньше воды через нее течет. Объем воды, текущей через трубу (ток) в единицу времени прямо пропорционален давлению воды (напряжению) и обратно пропорционален толщине трубы (сопротивлению).
Электротехника позволяет вычислить силу тока, если известны напряжение и сопротивление. Сопротивление – способность вещества тормозить поток электронов – измеряется в омах. Эта единица названа в честь Георга Ома (1789–1854), который также сформулировал знаменитый закон Ома:
I = E / R,
где I традиционно обозначает силу тока в амперах, E – электродвижущая сила, ЭДС (это первая буква в английском словосочетании electromotive force), а R – сопротивление.
Так, рассмотрим батарею, которая просто лежит в покое и ни к чему не подключена.
ЭДС E равна 1,5 вольта. Это потенциал для выполнения работы[8]. Поскольку между плюсовой и минусовой клеммой лишь воздух, сопротивление получается очень высоким, а значит, сила тока равна 1,5 вольта, деленному на очень большое число. Таким образом, ток практически нулевой.
Теперь соединим положительную и отрицательную клемму коротким отрезком медной проволоки (здесь и далее изоляцию на проводах показывать на рисунках не буду).
Перед вами короткое замыкание. ЭДС по-прежнему равна 1,5 вольта, но сопротивление очень низкое. Узнаем силу тока, разделив 1,5 вольта на очень малое значение. Сила тока получится огромной. По проводу побежит целая уйма электронов. На практике фактическое значение силы тока ограничено физическим размером батареи. Вероятно, батарея просто окажется не в состоянии выдать ток такой силы, и напряжение упадет ниже 1,5 вольта. Если батарея окажется достаточно велика, то провод разогреется, поскольку электрическая энергия станет превращаться в тепловую. Если провод нагреется слишком сильно, он может раскалиться и даже расплавиться.
Большинство электрических цепей попадает в промежуток между этими двумя крайностями. Их можно символически изобразить следующим образом.
Любой электротехник понимает, что зубчатая линия на этом рисунке обозначает резистор. В данном случае показано, что сопротивление в электрической цепи среднее – не высокое, не низкое.
Если сопротивление у провода низкое, он может сильно нагреться и раскалиться. Так устроена лампа накаливания. Честь создания электрической лампы накаливания обычно приписывается самому знаменитому американскому изобретателю Томасу Эдисону (1847–1931), но по состоянию на 1879 год, когда он запатентовал электролампочку, принцип ее работы был хорошо известен, и другие ученые тоже работали над этой проблемой[9].
Внутри лампы находится тонкая проволока, именуемая «нить накаливания», которая обычно изготавливается из вольфрама. Один кончик этой спирали подключен к нижнему контакту металлического цоколя, другой – к резьбовой поверхности цоколя, причем между нижним контактом и резьбой цоколя проложен изолятор. Провод обладает сопротивлением, поэтому нагревается. На воздухе вольфрамовая спираль раскалилась бы настолько, что просто сгорела бы, но внутри лампочки вакуум, поэтому раскаленная нить накаливания хорошо светится.
В типичном фонарике – две батарейки с последовательным соединением. Общее напряжение составляет три вольта. Сопротивление типичной лампочки из карманного фонарика – четыре ома. Следовательно, чтобы узнать силу тока в такой лампочке, делим три вольта на четыре ома и получаем 0,75 ампера, или 750 миллиампер. Таким образом, каждую секунду через лампочку пролетает 4 680 000 000 000 000 000 электронов.
Краткая проверка на практике: если попытаться измерить сопротивление лампочки карманного фонарика при помощи омметра, результат получится гораздо ниже четырех омов. Сопротивление вольфрама зависит от температуры, и по мере нагревания лампочки оно возрастает.
Вероятно, вы знаете, что на бытовых лампочках пишут, сколько в них ватт. Эта единица названа в честь Джеймса Уатта (1736–1819), прославившегося своей работой над паровым двигателем. Ватт – это единица мощности (P), которая вычисляется по формуле:
P = E × I.
Показатели нашего фонарика – три вольта и 0,75 ампера, то есть мы имеем дело с лампочкой мощностью 2,25 ватта.
Возможно, у вас в комнате горит стоваттная лампочка, которая рассчитана на бытовое напряжение 120 вольт. Следовательно, сила тока, идущего через такую лампочку, равна 100 ватт разделить на 120 вольт, то есть примерно 0,83 ампера. Таким образом, сопротивление стоваттной лампы накаливания равно 120 вольт разделить на 0,83 ампера – примерно 144 ома.
Кажется, мы проанализировали все элементы фонарика: батарейки, провода, лампочку. Но забыли о самом важном!
Да, еще выключатель. От положения выключателя зависит, есть ли ток в электрической цепи. Когда ток идет, говорят, что фонарик включен, или контур замкнут. Когда фонарик выключен (контур разомкнут), ток идти не может. Таким образом, провод и дверь в некотором смысле противоположны: когда дверь закрыта (замкнута), через нее нельзя пройти, а в случае с проводом всё наоборот.
Выключатель либо включен, либо выключен, ток или идет, или нет, лампочка или светится, или не светится. Подобно двоичным кодам, изобретенным Морзе и Брайлем, обычный фонарик может быть лишь в двух состояниях: включен либо выключен. Промежуточных состояний не существует. Понимание сходства между двоичными кодами и простыми электрическими цепями нам еще пригодится.
Глава 5. Заглядывая за угол
Вам двенадцать. Наступает ужасный день: семья вашего лучшего друга переезжает в другой город. Вы время от времени перезваниваетесь, но разве сравнишь беседы по телефону с полуночными посиделками, когда вы, вооружившись фонариками, сигнализировали друг другу азбукой Морзе! В итоге вы близко сходитесь еще с одним другом, живущим по соседству. Теперь надо обучить его азбуке Морзе, чтобы общаться за полночь, обмениваясь фонарными вспышками.
Проблема в том, что окно вашей спальни и окно спальни нового друга не обращены друг к другу. Дома стоят на одной улице, но окна смотрят в одну и ту же сторону. Если на улице не получится каким-то образом установить систему зеркал, азбукой Морзе через окно не пообщаешься.
Или все же пообщаешься?
Вероятно, к тому моменту вы уже что-то узнали об электричестве, так что решаете собрать собственные фонарики из батареек, лампочек, выключателей и проводов. Первым делом вы прямо в спальне соединяете батарейки и выключатель. Два провода тянутся из окна через забор в спальню вашего друга, где он подключает их к лампочке.
Я показываю всего одну батарейку, но вы можете пользоваться двумя. Здесь и далее на схемах так будет обозначаться выключенный (разомкнутый) переключатель.
А так – включенный (замкнутый).
Фонарик в этой главе работает по тому же принципу, что и в предыдущей, но провода, подключаемые к элементам схемы, немного длиннее. Когда вы замыкаете цепь, лампочка зажигается в комнате вашего друга.
Теперь вы можете обмениваться сообщениями при помощи азбуки Морзе.
У вас получился один «дальнобойный» фонарик; значит, можно подключить второй, которым будет пользоваться ваш друг.
Поздравляем! Вы только что соорудили двунаправленный телеграф. Как видите, здесь две одинаковые электрические цепи, которые совершенно не зависят друг от друга и нигде одна с другой не соединяются. Теоретически вы можете отправлять сообщение в момент, когда друг отправляет его вам (хотя это серьезная умственная нагрузка – отправлять и читать сообщения одновременно).
Возможно, вы догадаетесь, что длину проводов можно сократить на четверть, выстроив такую конфигурацию.
Обратите внимание: теперь мы соединили отрицательные клеммы двух батареек. Две кольцевые электрические цепи (от батарейки к выключателю, от выключателя к лампочке и от лампочки к батарейке) по-прежнему работают независимо друг от друга, хотя они и соединены, подобно сиамским близнецам.
Такое соединение называется «с общим проводом». В этой схеме общий провод проложен от левой оконечности, где соединены левая лампочка и батарейка, до правой, где соединены правая лампочка и батарейка. Эти подключения обозначены точками.
Давайте убедимся, что никаких фокусов тут нет. Во-первых, если нажать переключатель на вашей стороне, загорится лампочка дома у вашего друга. Красными линиями показано направление тока в электрической цепи.
В другую часть схемы электричество не попадает: электронам туда попросту не добраться.
Когда сигнал отправляете не вы, а ваш друг, лампочка у вас в комнате зажигается и гаснет от выключателя, находящегося у него в спальне. Опять же, направление электричества в цепи показано красными линиями.
Когда вы одновременно с другом пытаетесь передать сигналы, в некоторые моменты оба переключателя выключены, в других случаях один включен, а второй выключен, в третьих – оба включены. Тогда направление тока в цепи выглядит так.
По общему проводу ток не идет.
Когда мы соединяем две цепи в одну при помощи общего провода, у нас остается три провода вместо четырех, и длина всей проводки уменьшается на 25 %.
Если бы нам пришлось протянуть провода на достаточно большое расстояние, возможно, мы захотели бы сэкономить и избавиться еще от одного провода. К сожалению, это невозможно при работе с 1,5-вольтными батарейками и маленькими лампочками. Однако если вооружиться стовольтными батареями и более крупными лампами, вероятно, все получится.
Вот какой фокус: как только вы оборудовали общую часть цепи, на этом отрезке уже необязательно использовать провод; его можно заменить чем-нибудь еще. Например, шаром диаметром 12 тысяч километров, состоящим из металла, камней, воды и органических веществ. Этот гигантский шар – планета Земля.
В прошлой главе, описывая хорошие проводники, я упоминал серебро, медь и золото, но ничего не сказал о гальке и перегное. Земля и правда не идеальный проводник, хотя некоторые виды грунта (например, влажная почва) проводят электричество лучше других (в частности, сухого песка). Существует одно общее правило, касающееся проводников: чем он больше, тем лучше. Очень толстый провод обеспечивает большую электропроводимость, чем очень тонкий. Вот в чем главное достоинство Земли: она огромная.
Чтобы задействовать Землю в качестве проводника, мало просто воткнуть провод в грядку с помидорами. Нужно устройство, которое обеспечит хороший контакт, – я имею в виду, что у проводника должна быть обширная поверхность. В данном случае хорошо подойдет медный прут длиной хотя бы 2,5 метра и примерно 1,5 сантиметра в диаметре. Тогда мы получим площадь контакта проводника с землей, равную 1200 см2. Такой прут можно загнать в землю кувалдой, а затем подключить к нему провод. Если у вас дома проложены медные водопроводные трубы, выходящие из земли где-то за домом, провод можно подсоединить к подобной трубе.
Термин «заземление» немного неудачный, поскольку именно им обозначается и тот элемент цепи, который мы выше назвали общим проводом. В этой главе (если не будет указано иное) «заземление» означает физическое соединение с грунтом.
На схемах электрических цепей Земля обозначается так.
Электрики пользуются таким символом, потому что им лень рисовать саженный медный прут, закопанный в землю.
Рассмотрим, как все устроено. В начале главы была приведена вот такая однонаправленная конфигурация.
Если работать с достаточно мощными лампочками и батарейками, между вашим домом и домом вашего друга потребуется протянуть всего один провод, ведь в качестве второго проводника будет использоваться Земля.
Когда вы включите систему, электричество потечет так.
Электроны попадают в дом вашего друга прямо из земли, проходят через лампочку и провод, через выключатель у вас дома, а затем отправляются на положительную клемму батарейки. Электроны с отрицательной клеммы батарейки идут в землю.
Возможно, вы также пожелаете изобразить электроны, вылетающие из саженного медного прута, закопанного на заднем дворе вашего друга.
Если учесть, что Земля в данном случае выполняет точно такую же функцию для тысяч электрических цепей по всему миру, возможен вопрос: откуда электроны знают, куда именно лететь? Разумеется, не знают. В данном случае удобнее описать Землю при помощи другой метафоры.
Да, Земля – огромный проводник, но ее можно рассматривать и как хранилище, и как источник электронов. Земля полна электронами, как океан – каплями воды. Земля – не только неисчерпаемый источник электронов, но и огромный «сток» для этих частиц.
Однако Земля обладает некоторым сопротивлением. Вот почему не применяется заземление, когда требуется укоротить провода при опытах с батареями и сигнальными лампочками. Сопротивление Земли просто слишком велико, если речь идет о работе с низковольтными батарейками.
Обратите внимание: на двух предыдущих схемах батарейка заземлена через отрицательную клемму.
Я больше не буду рисовать заземленную батарейку. Вместо этого стану писать заглавную букву V, которая означает напряжение. Теперь однонаправленный телеграф с лампочкой выглядит так.
V означает «напряжение» и «вакуум». Считайте, что V – это электронный вакуум, а Земля – океан электронов. Электронный вакуум тянет электроны из Земли через электрическую цепь, тем временем совершая работу (например, зажигая лампочку).
Точка заземления иногда именуется точкой с нулевым потенциалом. Это значит, что в ней отсутствует напряжение. Как я уже рассказывал, напряжение – это потенциал для выполнения работы, и приводил пример с кирпичом, поднятым в воздух и обладающим потенциальной энергией. Нулевой потенциал будет у кирпича, лежащего на земле: оттуда некуда падать.
В главе 4 мы отметили, что электрические цепи закольцованы. Наша новая цепь совершенно не похожа на кольцо. Однако она все равно закольцована. Можно заменить V на батарейку, заземленную через отрицательную клемму, а затем нарисовать провод между всеми точками, где стоит символ заземления. Получится такая же схема, как и приведенная в начале этой главы.
Итак, вооружившись парой медных штырей (или водопроводных труб), можно сконструировать двунаправленную систему для обмена кодом Морзе и при этом обойтись всего двумя проводами, которые будут протянуты через изгороди между вашим домом и домом вашего друга.
Функционально эта цепь не отличается от конфигурации, показанной выше, где через забор между двумя домами протянуты три провода.
Итак, мы рассмотрели важный этап в развитии телекоммуникаций. Ранее мы могли общаться при помощи азбуки Морзе, но только по прямой, в пределах видимости, и только на таком расстоянии, на какое добивает луч фонарика.
При помощи проводов мы изготовили систему, которая позволяет не только общаться с другом «по кривой» (вне зоны прямой видимости), но и избавиться от ограничений, связанных с расстоянием между нами. Можно общаться с кем-то, до кого сотни и тысячи километров, – нужно лишь протянуть достаточно длинные провода.
Нет, в принципе, не совсем так. Пусть медь и очень хороший проводник, она неидеальна. Чем длиннее провода, тем выше их сопротивление. Чем выше сопротивление, тем слабее проходящий по ним ток, чем слабее ток – тем тусклее светит лампочка.
Итак, насколько длинные провода мы можем протянуть? Зависит от ситуации. Допустим, мы работаем с исходной двунаправленной конструкцией на четыре провода, без заземления и общего провода, используем батарейки от фонарика, а также лампочки. Можно для начала приобрести акустический кабель 20-го калибра. Такой кабель обычно применяется для подключения микрофона к стереосистеме. В нем два провода, так что он хорошо подойдет и для двунаправленного телеграфа. Если между вашей комнатой и комнатой друга меньше 15 метров, потребуется всего одна катушка провода.
Толщина провода измеряется по системе AWG (American Wire Gauge, американский калибр проводов)[10]. Чем меньше калибр, тем толще провод, соответственно тем ниже его сопротивление. Диаметр провода 20-го калибра – около 0,8 миллиметра, а сопротивление – 10 омов на 300 метров либо один ом на удвоенное расстояние между комнатами.
Неплохо, но что делать, если бы мы протянули провод на полтора километра? Общее сопротивление такого провода составило бы более 100 омов. Как вы помните, сопротивление нашей лампочки составляло всего четыре ома. По закону Ома можно рассчитать, что сила тока, который потечет по такой цепи, составит уже не 0,75 ампера (три вольта, деленные на четыре ома), а менее 0,03 ампера (три вольта, деленные более чем на 100 омов). Наверняка лампочка от такого низкого тока не загорится. Хороший выход – взять провод потолще. Но это может выйти дороже. Провода 10-го калибра потребуется вдвое больше, поскольку он одножильный, толщина его составляет около 2,54 миллиметра, но сопротивление – всего около пяти омов на 1,6 километра. Другое решение – увеличить напряжение и взять лампочки с гораздо более высоким сопротивлением. Например, стоваттная лампочка, освещающая вашу комнату, рассчитана на работу в сети напряжением 120 вольт и имеет сопротивление около 144 омов. В таком случае сопротивление проводов в меньшей степени отразится на всей нашей схеме.
Именно с такими проблемами столкнулись инженеры, которые 150 лет назад прокладывали первые телеграфные системы между Америкой и Европой. Независимо от толщины проводов и уровня напряжения, телеграфный провод просто невозможно протянуть на неограниченное расстояние. Согласно имевшейся схеме, работоспособная система могла охватить максимум несколько сотен километров, что несравнимо меньше тех тысяч километров, которые пролегают между Нью-Йорком и Калифорнией.
Решить проблему удалось, отказавшись от лампочек и сконструировав простые «щелкающие» телеграфы прошлого века. Получилось простое и неброское устройство, на основе которого впоследствии были созданы полноценные компьютеры.
Глава 6. Телеграфы и реле
Сэмюэл Морзе родился в 1791 году в городе Чарльзтауне. Сейчас это северо-восточная часть Бостона. К моменту рождения Морзе минуло уже два года, как ратифицировали Конституцию США. Шел первый президентский срок Джорджа Вашингтона, в России правила Екатерина Великая. Людовик XVI и Мария-Антуанетта спустя два года будут обезглавлены во время Французской революции. В 1791 году Моцарт завершил свою последнюю оперу «Волшебная флейта» и в тот же год умер в возрасте 35 лет.
Морзе получил образование в Йеле и изучал искусство в Лондоне. Он стал успешным портретистом. Портрет генерала Лафайета (1825) кисти Морзе до сих пор экспонируется в Ратуше Нью-Йорка. В 1836 году Морзе баллотировался в мэры Нью-Йорка как независимый кандидат и получил 5,7 % голосов. Кроме того, он был одним из первых, кто всерьез увлекался фотографией. Морзе учился у самого Луи Дагера и сделал одни из первых дагеротипов в Америке. В 1840 году он обучил этому искусству 17-летнего Мэтью Брэди, который вместе с коллегами впоследствии создал один из самых запоминающихся снимков Гражданской войны в США, портреты Авраама Линкольна и Сэмюэла Морзе. Все это лишь ремарки к его разносторонней карьере. В наши дни Сэмюэл Морзе наиболее известен как изобретатель телеграфа и азбуки, названной в его честь.