Книга Вихроны. Иллюстрированное издание - читать онлайн бесплатно, автор Александр Александрович Шадрин. Cтраница 3
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
Вихроны. Иллюстрированное издание
Вихроны. Иллюстрированное издание
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

Вихроны. Иллюстрированное издание

Источник заряда массы (отрицательное внешнее поле) этих частиц индуктирован волноводом из гравпотенциалов, установленных стационарно внутри фазового объёма замкнутой частицы при разрядке сферы векторного гравитационного монополя. Последний рождается-заряжается путём ускоренного центростремительного движения магнитного монополя в центр на поверхности полусферы волновода из электропотенциалов этой частицы со спином 1/2, где и происходит этот квантовый выход.

Между источником заряда движения свободного вихрона с определённой энергией и самыми лёгкими микрочастицами, обладающими зарядом массы, существует квантовый переход энергии магнитного заряда в энергию гравитационного заряда. Так происходит преобразование-замена свободного поступательного самодвижения магнитного монополя (фотон без массы) в его замкнутое вращательно-поступательное движение с образованием фазового объёма из электро и гравитационных потенциалов какой-либо элементарной частицы с массой.

Магнитного заряда с постоянным зарядом не существует, а существует лишь переменные по заряду вихроны свободного и замкнутого движения.

1.3 Макропространства-поля

Кластеры из различных регулярно повторяющихся атомов или молекул, образуют одно из четырех агрегатных состояний вещества пассивной и инертной массы – твердое, жидкое, газообразное или состояние плазмы, а новое агрегатное состояние материи – ЧСТ[39] создают активное состояние центральных полей тяготения. Внешние пространства, над такими кластерами и ЧСТ назовем макропространствами-полями по сравнению с элементарными микропространствами-полями над ядрами, атомами и электронами с их мультиполями. Гравитационные взаимодействия между кластерами начинают превалировать над электромагнитными при массе более планковской.

К таким пространствам относятся внутренние и внешние поля кластеров вещества, астероидов[40], планет, звёзд и галактик, а также квазаров и пульсаров.

Отдельный класс макропространств-полей образуют ядра ЧСТ, которые ещё не произвели на своей поверхности собственного достаточного количества пассивной массы микрочастиц для образования таких кластеров обычного вещества. В этот период их эволюции они активно захватывают и поглощают внешнее вещество, в том числе, атомно-молекулярное вещество, наработанное на поверхности уже светящихся звёзд или газожидких планет, т. е. образуют связанные пары пульсар-звезда или пульсар-планета. Это поля, которые создают квазары и пульсары.

Непрерывный процесс квантования-зарядки и индукции-отталкивания зерен от замкнутой поверхности таких кластеров поляризует окружающее вещественное пространство, превращает его в соответствующее пульсирующее, непрерывно обновляемое поле и создаёт динамически распределённую плотность соответствующих потенциалов поля – эквипотенциальные поверхности.

Суммарные внутренние поля таких кластеров определяют его физические свойства и обусловлены плотностью[41] распределения потенциалов.


Первичное гравитационное макропространство-поле в расширяющейся Вселенной создаётся вокруг первичных чёрных сферических тел (ЧСТ-квазары, ЧСТ-пульсары, позиция 21[42]), которые выпадают из атмосферы нашей Вселенной. Эти ЧСТ могут быть образованы только в невещественном пространстве путём преобразования длины поступательного движения-пути трека фотона во вращательное движение рождающегося сфероида-клубка переменного и нарастающего радиуса. Как только ЧСТ «упало» в вещественное пространство нашей Вселенной в форме вращающегося сферического клубка, начался его распад[43] и образовались переменные гравитационное, электрическое и магнитное поля – связанный механический и электромагнитный гипервихрон с его полями. Во время его притяжения к центру (скопления Галактик) ближайшей наибольшей скопившейся пассивной атомно-молекулярной массы, активная масса ЧСТ и, соответственно, объём наиболее эффективного его гравитационного поля всё время увеличивается по величине при постоянном внешнем диаметре. Это обусловлено очень большой длиной волноводов, более 1028 см, что соответствует времени жизни движущихся в волноводах из центра к поверхности электромагнитных квантов до 14 миллиардов лет и более. Производство нейтронов или излучение длинноволновых квантов на поверхности ЧСТ происходит только по истечении этого периода времени. Однако, при этом, наибольшая часть активной массы до 80 % индуктируется собственными квантами при движении по волноводам на поверхность сфер, расположенных ближе к центру. Поэтому больщие по размерам ЧСТ, попав в некоторое крупное шаровое скопление звёзд примерно одинаковой величины, становятся ядром спиральной Галактики. Спирали звёзд и газопылевых туманностей в таких Галактиках, сходящиеся рукавами к центру, и образованы всё время увеличивающейся массой и силой поля такой ЧСТ, в отличие от круговых и эллиптических орбит планет вокруг звёзд, ядра которых уже давно находятся в стадии производства нейтронов и долгое время имеют практически постоянную или уменьшающуюся массу. Именно с этим эффектом связано 95 % формирование полей тёмной массы и энергии во внешних и промежуточных слоях Вселенной. В самых внешних слоях происходит накопление и взаимное отталкивание друг от друга ЧСТ (квазары и пульсары), имеющих одинаковые знаки гравитационных полей, что и подтверждается их распределением (с Z более 7-10, красное смещение фотонов) в этой части Вселенной.

Протяжённость полей. Практически установлено, что наиболее эффективное поле активного тяготения Земли распространяется до полутора миллионов километров. Установлено и то, что поля собственного пассивного тяготения астероидов отличаются по протяжённости и качеством притяжения от центральных полей активных планет и Солнца, т. е. практически притяжение к астероидам таких атомно-молекулярных кластеров, какими являются спускаемые аппараты, определяется силами эффекта Казимира в поле Солнца. Пока отсутствует калибровка соответствия размеров ЧСТ размеру эффективного дальнодействия центрального поля. Не измерены экспериментально и скорости распространения гравитационных, электрических и магнитных полей. Но уже измерены эффективные пределы дальнодействия стационарных источников и фотонов – они разные. Это доказывает различный механизм и, соответственно, скорость распространения этих полей.

Протяжённость распространения активных гравитационных полей зависит от размеров ЧСТ и сравнима, в минимуме, с видимыми размерами Галактик, планет со спутниками и звёздных систем, содержащих некоторое количество планет, типа Солнечной системы или системы планет Юпитера или Сатурна.

Таким образом, пара источник-пространство индуктирует зёрна-потенциалы, а пространство, при этом, является их проводником, и вместе они образуют вещественное пространство. Если бы источники заряда или движения не индуктировали бы непрерывно изменяющееся собственное поле, то вокруг таких источников не происходило бы движения астрофизических объектов, не было бы Галактик и звёздных систем, содержащих планеты и их спутники, не было бы северного сияния и молний, линейных и шаровых, синих струй, спрайтов и эльфов, не было бы стабильных ядер химических элементов и электронов, не было бы атомно-молекулярного вещества и т. д.

Гравитация – эта самая слабая форма поля материи. В больших макрообъёмах над источниками её поля проявляют все известные свойства трёхмерного плоского пространства.

Гравитационные аномалии.

Измерения стационарных гравитационных аномалий (ГА) – это отличия от средней величины ускорения свободного падения. Однако, как показывает практический опыт, существует и импульсный отрицательный выброс гравитационных полей в небольших по протяжённости областях на поверхности Земли.

Такие измерения, проводившиеся еще в 50-х годах прошлого века, показали, что вблизи больших гор отсутствуют положительные ГА, а в океанах, где следовало бы ожидать крупных отрицательных ГА (ведь плотность воды, заполняющей впадины океанов, в 2,5–3 раза ниже плотности горных пород, залегающих на таком же уровне на материках) ничего подобного не наблюдается.

В настоящее время получены многочисленные и уточняющиеся карты гравитационных полей Земли, на которой как на рентгеновском снимке видны тени, рельефы гор из обычного вещества и разломы (пустоты) в мантии и коре Земли при просвечивании их центральным полем активного ядра Земли. Наибольшие отрицательные стационарные гравитационные аномалии обнаружены в Индийском океане и на Восточном побережье Канады. Наряду с такими стационарными аномалиями имеется бесчисленное множество периодических коротких выбросов и медленно меняющихся аномалий[44], свидетельствующих о непрерывном перераспределении и фазовых превращениях масс при их движении от мантии к коре. Аналогичные тени отрицательных аномалий от гравитационного поля Земли обнаружены и на обратной стороне Луны.

Источники гравитационного поля бывают следующие:

– центральные, ЧСТ из плотного ядерного вещества, типа нейтрона, это квазары и пульсары, источники активного центрального поля тяготения со знаком поля плюс – 4π излучение зёрен-потенциалов,

– рассеянные в форме кластеров ядерно-атомно-молекулярного вещества, образующие инертно-пассивную массу из атомов со знаком минус, встречающиеся в виде газовых туманностей, астероидов, комет, метеоритов и Луны – поглощение потоков потенциалов,

– наработанные распадом собственного ЧСТ, кора и мантия, «жидкое» ядро планеты образуют пассивную массу, находящуюся в поле ещё активного ядра планеты и имеющих собственное поле со знаком минус – поглощение потока потенциалов,

– источники массы смешанного типа – это звёзды и геологически активные планеты.

Поля, соответствующие этим макроисточникам – это различные поля тяготения с разными[45] по излучающей и поглощающей способности потенциалами.


Самый острый вопрос современности – существуют ли антигравитационные поля?

С позиций САП такие поля должна создавать антиматерия. Однако поиски таковой во всей Вселенной не привели к положительному результату. Такую материю, как и магнитный монополь Дирака, тоже ищут уже много десятилетий.

С позиций реального представления, как и в случае с магнитным монополем, необходимо просто уточнить искомые свойства этих полей. Гравитационные поля астрофизических объектов – многокомпонентны. Одна из основных компонент – центральна и имеет положительный заряд, источник которой ЧСТ, и сформирована движением внутри него отцентра квантов по волноводам с центростремительным ускорением по окружностям увеличивающегося радиуса к поверхности радиусом до 108см. Поля пассивной массы ядерно-атомно-молекулярного вещества создаются обратным движением магнитных монополей к центру со средним размером до 10-15см. В нашей Вселенной не встречается макроядер космических объектов даже с размером более одного сантиметра, в которых такое вращательное движение частиц[46] в них направлено кцентру. Однако в отличие от природы техническое воплощение такого зеркального движения возможно – это явление называется центральной или аксиально-струйной имплозией. Так, например, реализация такого движения в «репульсине» В. Шаубергера, в аппаратах Ф. Свита, Д. Серла и в конвертере В. Рощина, С. Година, однозначно указывает на возможность технической индукции собственного гравитационного монополя со значением величины соизмеримой с вращающейся массой системы, направлением вектора которого можно управлять путём вращения магнитного кластера по часовой или против часовой стрелки. В природе же существуют лишь индуктированные гравитационные заряды обоих знаков. Другими словами, есть реальная возможность решения этой задачи с помощью техническихсредств и на основе действующих законов в природе нашей Вселенной.

1.4 Гиперпространство Вселенной

Гиперструктура пространства Вселенной носит объемно-сетчатый и ячеистый характер. Бесконечно большой, но конечный и непрерывно расширяющийся «пузырь» нашей Вселенной, далеко неравномерно заселен звездами, галактиками, скоплениями и сверхскоплениями галактик в стенах в видимой ее части размером ~ 1028 см. Исследования вращений спиральных галактик, а также распределений скоростей галактик в скоплениях и сверхскоплениях показало, что большая часть полной массы Вселенной невидима и обнаруживается лишь по гравитационному воздействию на наблюдаемые видимые объекты. Поэтому основная часть гравитационного пространства (более 95 %) является невидимой, и, следовательно, дополнительно не освещена потоками фотонов. И как в любом расширяющемся пространстве на первое место по его структуре встает вопрос о месторасположении центра такой сферы. Точное установление центра Вселенной, а также ее анализ и изучение ее структуры позволит дать ответ на вопрос о характере направления эволюции материи в пространстве – синтез или распад?

Если считать видимую часть Вселенной ближайшей к центру, то центральным ядром этого «пузыря» должна быть область, где полностью отсутствует тёмная активная масса или ЧСТ, а ее центр должен быть определен по полному отсутствию центральных гравитационных (звезд, Галактик) полей. Это могут быть россыпи газопылевых туманностей соизмеримых по пассивной массе большим звездным скоплениям. Области видимой части Вселенной, где преобладает структура в виде групп и скоплений галактик, образующих вытянутые «нити» (стены) – филаменты, создают связную трехмерную сетку гравитационных полей – из пузырей и их стенок. Причём в центре пузырей (войд) находятся мощные ядра ЧСТ квазаров, которые отталкиваются друг от друга одноимёнными положительными полями, одинаково притягивая к себе скопления и сверхскопления Галактик с их наработанной отрицательной массой вещества в уже достаточном количестве. В местах пересечения филаментов располагаются сверхскопления галактик, к которым и притягиваются вновь образованные самые крупные более 108см ЧСТ, образуя эту ячеисто-сетчатую крупномасштабную структуру Вселенной. Между филаментами находятся пустые области-пространства, в которых отсутствуют галактики, но в их центрах и размещены эти самые крупные ЧСТ, которые и создают эти пустоты-войды. Видимое пространство между Галактиками и звездными скоплениями – суть плоское пространство, регуляризованное дальнодействующими гравитационными полями активных масс, долгоживущими, и самодвижущимися электромагнитными полями, а также разрозненными скоплениями газопылевых облаков и туманностей.

Наиболее удаленные от центра Вселенной внегалактические объекты – квазары, обладающие практически чисто центральным полем тяготения ЧСТ, принадлежат к более поверхностным слоям Вселенной. С момента открытия квазаров в 1963 году процесс обнаружения новых квазаров шел очень быстро и к 1988 году их уже насчитывалось около 4000, а сейчас – уже более 20 000. Наблюдения за местоположением обнаруженных квазаров являются важным источником информации о распределении материи активной (однополярной) массы во Вселенной.

Определение расстояний до далеких космических объектов (галактик и квазаров) производится в настоящее время по «красному» смещению «Z» их спектров излучения. «Z» определяется отношением величины «красного» смещения какой-либо спектральной линии в спектре наблюдаемого объекта к длине волны этой линии. Квазары – самые далекие видимые объекты Вселенной. Поэтому они являются превосходным предметом для исследования с целью подтверждения той или иной модели Вселенной.

Распределение квазаров. Исследования распределения квазаров в пространстве Вселенной проводились по разным параметрам, в том числе и по величине «красного» смещения. Наиболее далекие квазары наблюдаются на расстоянии в 30–35 миллиардов световых лет, а самый далекий с Z ~ 9 на расстоянии 46 миллиардов световых лет. Плотность квазаров возрастает к периферии Вселенной.

Распределение Галактик. Группа галактик формирует филаменты (очень тонкие нитевидные структуры) протяженностью в «миллионы световых лет и составляет скелет Вселенной». Филаменты расположены примерно в 6,7 миллиардов световых лет от Земли. Галактики, скопления галактик и их сверхскопления, «встроенные» в филаменты, помещены между пустотами, создавая тем самым гигантскую «пену». Галактики и их скопления концентрируются в изогнутых «стенках» толщиной порядка 10 миллионов световых лет, пересекающихся друг с другом. Некоторые «стенки» прослеживаются на сотни миллионов световых лет. Там, где стенки «смыкаются», галактик особенно много (сверхскопления). Эти области повышенной концентрации галактик образуют в пространстве подобие длинных волокон (цепочек). Внутри ячеек, между стенками, находятся пустоты – «войды», в которых плотность галактик как минимум в десять раз меньше, чем в среднем. Некоторым аналогом такой структуры может служить пена из мыльных пузырей, в которой стенки пузырей и играют роль филаментов. Правда, распределение галактик вдоль «стенок» ячеек, в отличие от распределения мыльного раствора в пузырях, очень неоднородно, да и сами ячейки не обладают правильностью форм. Размеры больших ячеек составляют более сотен миллионов световых лет, но много и более мелких.

Ближайшая к нам «стенка» проходит длинной дугой через южные созвездия Гидры – Центавра – Телескопа – Павлина – Индейца. Образующие ее галактики имеют лучевые скорости в несколько тысяч км/с, и большинство из них удалено от нас не менее чем на 20–30 миллионов световых лет. К этой «стенке» принадлежит и скопление в Деве, и все Местное Сверхскопление, на периферии которого располагается Местная Группа галактик, включающая в себя нашу Галактику. Поскольку мы находимся вблизи края этой «стенки», составляющие ее галактики образуют на небе сравнительно узкую полосу, растянувшуюся более чем на 180º, наподобие того, как звезды Галактики концентрируются в полосу Млечного Пути. Отдельных звезд в галактиках во много раз больше, чем отдельных галактик в стенках ячеек.

К другой длинной «стенке», иногда называемой «Великая стена»[47], которая протянулась полосой почти на пол неба, принадлежит богатое хорошо изученное скопление в Волосах Вероники, находящееся на расстоянии почти 300 миллионов световых лет от нас, в центре другой сверхгалактики. Скопление в Волосах Вероники – является центром «Великой стены». Как и другие богатые скопления, оно содержит много эллиптических галактик. Изучение его динамики впервые указало на наличие большого количества невидимой материи. Масса скопления – около 1015 масс солнца.

Одно из крупных сверхскоплений галактик, образованное несколькими скоплениями, удаленное от нас примерно на 200 миллионов световых лет, получило название «Великий Аттрактор». Вселенную можно считать однородной только, начиная с масштаба в несколько сотен миллионов световых лет. Сфера такого или большего размера будет содержать примерно одинаковое количество галактик, скоплений галактик или «войдов», а на более мелких масштабах распределение галактик нельзя считать однородным даже приблизительно.

В созвездии Девы находится крупное скопление галактик, в котором преобладают эллиптические звездные системы. Среди последних встречаются и сверхгигантские образования, такие, как галактика М87. 16 галактик этого скопления вошли в каталог Месье. Скопление в Деве, в котором насчитывают около 2,5 тысяч галактик, и является центром одноименного сверхскопления галактик. В него входят также, например, скопления в созвездиях Большой Медведицы и Гончих Псов. До скоплений Девы и Большой Медведицы примерно одинаковое расстояние – около 20 мегапарсек.

Размеры сверхскоплений достигают сотен миллионов световых лет. Всего же сверхскоплений выявлено около полусотни. В каждое в среднем входит около 10 скоплений, хотя бывают и значительные отклонения в большую и меньшую стороны. Сверхскопления галактик являются самыми большими из известных структур, целостность которых обеспечивается гравитацией. Во всей видимой Вселенной сверхскопления распределены равномерно.

Практически все стены содержат в своем центре богатое скопление галактик. В «близкой» Вселенной находится всего три таких скопления – в Волосах Вероники, Персее и ACO 3627, которое экранируют облака пыли в Млечном Пути.

Сравнение данных о галактиках с Z=10 и Z=8, т. е. разнесённых во времени друг от друга на 100–200 миллионов лет, позволило учёным сделать заключение о том, что скорость звёздообразования выросла в 10 раз.

Мир звезд и галактик вообще не смог бы возникнуть и Вселенная осталась бы бесструктурной, если бы гравитационное поле обычного атомно-молекулярного вещества звёзд и планет не проявляло бы себя в виде филамент на фоне активных центральных полей тяготения квазаров, а также светящейся массы вокруг ядер звёзд и планет.

Непрерывное расширение внешней поверхности Вселенной обусловлено выпадением ЧСТ из ее «атмосферы», т. е. из области, где кончаются границы гравитационных полей. Увеличение внешней поверхности Вселенной происходит за счет раздвигания границ с аморфным сингулярным пространством, которое регуляризируется гравитационным полем вновь образованной ЧСТ с активным положительным полем гравитации.

Таким образом, гиперпространство Вселенной можно представить следующим образом:

– Размеры самых больших структур во Вселенной – сверхскоплений галактик[48] и гигантских «войдов» – достигают десятков мегапарсеков. Области Вселенной размером 100 Мпк и более выглядят все одинаково, при этом выделенных направлений во Вселенной нет.

– Пространственная кривизна Вселенной если и отлична от нуля, то очень мала.

– На больших расстояниях регистрируются только яркие объекты, а самыми яркими постоянно радиоизлучающими объектами во Вселенной являются квазары.

В целом наша Вселенная – это «пузырь» раздувающегося невзрывным образом по внешней поверхности вещественно ячеистого гравитационного пространства, за счёт увеличивающегося числа ЧСТ и объёма пространства вокруг них. Сравнить этот процесс можно с процессом пенообразования при внешнем взбивании мыльной пены.

Видимая часть размером более 1028 см от центра заполнена галактиками, скоплениями и сверхскоплениями галактик, образующих трехмерное ячеисто-сетчатое дальнодействующее гравитационное поле и плоское пространство Вселенной, неравномерно регуляризованное гравитационными, электромагнитными полями и газопылевыми облаками. В этой части производство пространства закончено, а масса постоянна.

Промежуточная часть внешнего сферического гиперпространства образована распадающимися ЧСТ на разных этапах эволюции с образованием светящихся облаков[49] сброшенной плазмы при взрывах новых и сверхновых, импульсным излучением пульсаров, нейтронных звёзд и т. д., а также точечно невидимую часть, размещённую в этой промежуточной и образующей крупномасштабную и ещё частично видимой части Вселенной. ЧСТ, пульсары, квазары, нейтронные звёзды, цветные и белые карлики, с одной стороны, как обладающие положительным гравитационным зарядом, а также отдельные звёзды, галактики и их сверхскопления, с другой стороны, как обладающие вдобавок ещё и отрицательным гравитационным зарядом, формируют вещественное пространство нашей Вселенной в виде ячеисто-точечной гравитационной пены и переменной массы.

Невидимая поверхностная часть пространства Вселенной существенно больше по объему превосходит промежуточную и внутреннюю видимую. Эта область регуляризована относительно равномерным распределением квазаров и пульсаров и определяется, в основном, только гравитационными, магнитными и электрическими полями их ЧСТ, а также их невидимыми электромагнитными полями фотонов в рентгеновском и радиодиапазонах. В этой части Вселенной, в связи с непрерывным перемещением ЧСТ, вследствие постоянно растущей массы и падением к центру пассивной массы, их разной эволюцией, происходит производство дополнительного гравитационного пространства – расширение Вселенной и увеличение её массы. В целом эту часть пространства Вселенной более наглядно описать кристаллической решёткой твёрдого тела, у которой в узлах размещены положительные заряды, окружённые отрицательными. Только у решётки твёрдого тела положительные заряды (электрические) стабильны по значению, а у квазаров и пульсаров этот заряд (масса) переменный, что и приводит к эволюции и движению во Вселенной.