Книга Гравитация и эфир - читать онлайн бесплатно, автор Александр Бакулин. Cтраница 2
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
Гравитация и эфир
Гравитация и эфир
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

Гравитация и эфир

Значит, прошивая Землю, гравитационный квант точно наскочит на:



Поэтому, если поставить друг за другом миллиард Земель подряд, то гравитационный квант, пришивая этот миллиард Земель, точно наскочит только на одно гравитационное ядро из мириадов там этих ядер. Но за каждый дискрет в 43 наносекунды всю цепочку из

атомов будет пересекать не единичный гравитационный квант, но столько этих квантов, сколько их находится в каждое мгновение времени внутри сечения атома. Плотность потока гравитационных квантов выше плотности потока электромагнитных квантов по крайней мере на 6 порядков величины. То есть если внутри сечения атома «мгновенно» находятся, допустим,
электромагнитных квантов, то гравитационных там квантов, на диаметре атома, «сфотографировано»
штук. Поэтому, если, прошивая Землю, квант наскакивает впрямую на
гравитационных ядер, а таких событий на каждом диаметре атома мы насчитаем за каждый дискрет в 43 наносекунды
штук (событий), то это значит, что за этот дискрет времени хотя бы один гравитационный квант провзаимодействует хотя бы с одним гравитационным ядром одной из частиц на диаметре Земли. Дискрет в 43 наносекунды мы рассматриваем потому, что практически любое «земное» событие будет происходить за более медленное время, чем этот быстрый дискрет. Даже переходы электронов внутри атомов с орбиты на орбиту могут быть сравнимы с этим временем, не говоря уже про все другие события, происходящие на Земле с макро-телами. То есть за такого порядка дискрет гравитация будет отслеживать довольно точно любое земное событие.

Мы только что оценили, хотя и самым грубым пока способом, вероятность того события, когда последовательная цепочка из миллиарда следующих друг за другом квантов гравитационного вакуума прошивает диаметр Земли, находясь в течение малого дискрета времени в 43 наносекунды внутри тела Земли – вся цепочка. И при этом из всей этой цепочки только один квант точно налетает на одно из гравитационных ядер одной из элементарных частиц суммарного количества атомов –

штук. Мы увидели, что эта вероятность близка к единице. И если бы гравитация взаимодействовала внутри Земли только с гравитационными ядрами электромагнитных частиц, то такого малого взаимодействия (единичное отклонение одного из квантов за дискрет времени нахождения внутри Земли) было бы слишком мало для того, чтобы хотя бы на едва заметную величину времени задержать внутри Земли эти кванты. Но дело спасает то обстоятельство, что каждый гравитационный квант, прошивая тот каждый атом, в котором он наскочит точно на ядро одной из его частиц, на самом деле наскакивает не только именно на тело этого ядра, но ещё «задолго» до этого, он наскакивает там на электромагнитное поле частицы, представляющее собой «длинный» поток-цепочку элементарных электромагнитных квантов. Непосредственным же образом он наскакивает не на «электромагнитную» площадь каждого такого кванта, но на гравитационное сечение гравитационного ядра этого кванта. То есть тот квант, который задумает наскочить на поток – цепочку квантов поля электромагнитной частицы, мгновенно прошивает многие сотни, если не тысячи ядер этих квантов, даже если он налетает точно не на все эти электромагнитные кванты, но только на их какую-то согласованную с ним часть. И на каждом таком ядре он способен заметно отклониться в ту или иную сторону, а следовательно, способен задержать свой путь внутри макро-тела. Более того, этот квант, прошивая макро-тело, взаимодействует с потоком квантов поля частицы, не только налетая на частицу лоб в лоб, но он способен как-то «однократно» взаимодействовать с боковыми полями тех частиц, которые он не прошивает лоб в лоб, но просто пролетает вблизи или вдали от них. А таких там его взаимодействий – мириады. И каждое из них отклоняет – задерживает наш гравитационный квант по-своему.

Сейчас не будем вдаваться в подсчёты вероятностей всех суммарных событий точных столкновений гравитационного кванта с гравитационными ядрами, в первую очередь, конечно же, с ядрами не самих элементарных частиц, но их полей – как согласованных потоков-цепочек электромагнитных квантов. Подобными подсчётами могут заняться заинтересованные школьники. Ясно только одно: каждый гравитационный квант, налетая на любое макро-тело (в пределе – налетая даже на единичную частицу), обязательно взаимодействуя с гравитационными ядрами элементарных электромагнитных частиц этого тела, отклоняет свой путь в пространстве. А это значит, что даже при единичном взаимодействии только с одним из миллиардов ядер тела гравитационный квант задержится внутри этого тела на чуть большее время, чем тогда, когда бы он прошивал такой объём чисто гравитационного вакуума, заполненный только изотропными квантами этого вакуума, в результате никак не отклоняющими усреднённую там до прямолинейной трассу этого кванта и задерживающими путь кванта всегда на одну и ту же величину времени, пропорциональную превышению действительной скорости кванта над его усреднённой скоростью, которую можно назвать «скоростью распространения гравитационного излучения в гравитационном вакууме». Причём скорость распространения гравитационного излучения в изотропном электромагнитном вакууме Метагалактики обязана быть меньше скорости распространения этого излучения в чистом гравитационном вакууме гигантских меж-вселенских областей Снежинки, хотя и на весьма малую величину их расхождений.

Почему мы стали говорить не о каком-то «гравитационном поле», излучаемом телом, но пока только о задержке в пути в этом теле внешнего гравитационного кванта, налетающего на тело? Потому что если каждый из миллиардов и миллиардов квантов, ежесекундно налетающих на тело с самых разных сторон пространства, будет задерживаться в этом теле хотя бы на доли процента времени по отношению к тому времени, за которое он пересёк бы такой же объём пространства чисто гравитационного вакуума, то общее количество гравитационных квантов, находящихся в объёме тела в каждое мгновение времени (равное времени пересечения квантом такого же объёма пространства в чисто гравитационном вакууме), это их количество возрастёт на те же доли процента по отношению к окружающему тело «изотропному» гравитационному вакууму. То есть внутри тела возрастает плотность гравитационных квантов. Это первое, что может прийти в голову при поисках ответа на вопрос о природе гравитации. Но не всё так просто. Однако мы пока продолжим в том же духе.

Но это значит, что теперь, в любой сколь угодно малый дискрет времени (почти в «сколь угодно малый») эти кванты, находящиеся «сейчас» внутри тела, будут вылетать из него в самых разных направлениях. Причём градиент превышения этих, уже направленных телом квантов (все они направлены в стороны – «от тела») будет превышать у самой кромки тела плотность ненаправленных там квантов изотропного вакуума ровно на те же доли процента величины их плотности.

Ещё раз: теперь уже более осмысленно. Нигде в гравитационном вакууме нашей «маленькой» Вселенной мы, пожалуй, не найдём заметной увеличенной плотности общего количества гравитационных квантов в любом заданном объёме гравитационного вакуума. Но среди этого везде одинакового их количества мы будем обязательно находить ту часть их общего в объёме количества, которая, хотя и еле заметно, но направлена любым макро-телом в сторону – «от тела». При этом можно предположить, что чем меньше объём макро-тела (чем меньше его «масса»), тем всё больше гравитационных квантов из него будет вылетать в любой дискрет времени, которые не провзаимодействовали внутри тела ни с одной частицей или ни с одним электромагнитным квантом, «излучённым» какой-либо «элементарной частицей» тела. А такие кванты можно тогда отнести к квантам чисто изотропного гравитационного вакуума, которые, хотя и прошили физический объём тела, но при этом «не увидели» ни одной электромагнитной частицы или ни одного электромагнитного кванта, «излучённого» частицей тела и находившегося внутри тела в момент пересечения этого тела гравитационным квантом.

И может только показаться, что цифра «долей одного процента» направленных телом квантов – малая. Может оказаться, что она наоборот – слишком большая для процесса действительного «излучения» телом «гравитационного поля» вокруг себя. Эти проценты надо грамотно соотносить с реальным законом всемирного тяготения, открытым Ньютоном и Гуком в своё время. Но, пожалуй, на такое, чисто теоретическое исследование, у нас сейчас нет никакого времени. У школьников может быть его больше (у заинтересованных в этой теме школьников).

Мы же здесь обозначили эту тему пока лишь в самых общих чертах. Однако и в таком виде она может пригодиться для того, чтобы забраковать многие и многие теории, пытающиеся придумать физику гравитации – всякая теория на свой лад. Но главное: нарисованная здесь картина, наверное, поможет школьникам лучше понять природу вещей. Мы так думаем.

* * *

Что же касается Эйнштейна, то его интуиция сыграла с ним злую шутку. Эйнштейн зачем-то зациклился на каких-то «гравитационных волнах», хотя сначала надо было, наверное, понять что-то о «гравитационном излучении», исходящем от самых разных тел. Здесь, на самом деле, выступает на первый план (как нам кажется) задача поиска Эйнштейном – как новым молодым и весьма честолюбивым учёным – лёгких путей в науке. Действительно, любое гравитационное излучение, исходящее от любого тела (хоть макро-тела, хоть микро) – это всё то же «гравитационное поле». То есть какое-то статическое (стационарное) поле. Но про это поле ещё до Эйнштейна фактически прозрачно намекал, причём – довольно просто, Ньютон своим «законом всемирного тяготения». В письме Р. Бентли от 1693 года Ньютон говорит следующее: «Непостижимо, что чистая неодушевлённая материя взаимодействует и влияет без посредничества чего-либо, что является материальным, на другую материю без взаимного контакта, как должно было бы быть, если бы притяжение (в значении Эпикура) было бы основным и неотъемлемым для этой материи. И это одна из причин, по которым я выразил Вам своё желание, чтобы Вы не приписывали мне врождённое тяготение. Чтобы притяжение было врождённым, неотъемлемым и существенным в материи, так что тело могло бы воздействовать на другое тело на расстоянии через вакуум, без того, чтобы вмешивалось что-то, через что действие или сила могут передаваться от одного к другому, мне кажется таким огромным абсурдом, что я не верю, что подобное могло бы прийти в голову кому-либо сведущему в философских вопросах. Причиной притяжения должен быть посредник, действующий в соответствии с определёнными законами, но является ли он материальным или нематериальным – вопрос, который я оставляю для размышлений моим читателям». Но Эйнштейн, в отличие от Ньютона, уже, наверное, мог думать о том, как это поле (этот ньютонов «посредник») каким-то образом обнаружить – измерить. Хорошая была бы задумка. Но как обнаружить параметры этого излучения? Например, скорость излучения? Для этого надо бы знать, как может колебаться это излучение в каких-то процессах. Однако здесь мы только попробовали приписать Эйнштейну явно несвойственные ему мысли. Дело в том, что о каких бы то ни было излучениях, касающихся гравитации, мог думать кто угодно, но только не Эйнштейн. Потому что для этого потребовался бы какой-то переносчик (посредник) этого излучения, на роль которого мог бы подходить какой-нибудь «гравитационный эфир» или, на худой конец, даже какой-то «электромагнитный эфир». Но все эти «эфиры» Эйнштейн зарубил на корню с самого начала своей физики.

– Но позвольте, – скажет тут смышлёный школьник, – ведь гравитация всё равно должна как-то по «чему-то» распространяться; ведь – не по пустоте же?

– Верно, дружище, пустое пространство всё же надо чем-то заполнять. Но в вопросе о гравитации Эйнштейна заботила не столько физика происходящего, сколько чистый математический приём, который мог бы избавить физиков от их дум о такой далёкой и непонятной физике гравитации. Этот математический приём просто выбрасывал «физику гравитации» из науки-физики.

– А что, так можно делать? Но зачем? Всё равно ведь когда-то придётся узнавать эту «физику» гравитации. И, наверное, придётся это делать нам, школьникам и студентам, вместо Эйнштейна. Раз уж физики перестали об этом думать. А в чём состоял-то приём этот математический?

– Он очень простой по свое логике. Правда, до такого приёма может додуматься весьма извращённый ум, ищущий, однако, наиболее лёгкие пути к достижению своей (хотя и «сиюминутной», но) цели. У Эйнштейна был его философский наставник – Эрнст Мах. Этот Мах проповедовал, в числе прочего, свою философию «экономии мышления». Мол, чем меньше мы думаем о чём-то, тем лучше. Зачем много думать? Если к цели можно прийти, мало думая, то так и хорошо будет. Цель ведь будет достигнута. Кто меньше думает для достижения своей цели – тот и молодец. Как тебе такая философия?

– Для них, для Маха да для Эйнштейна, она – хорошая. Плохо только, что для меня она плохая. Ведь это мне опять теперь надо будет думать о физике вещей. Они-то мне всё равно ничего не сказали своей математикой. Ну, бог с ними. Но вы так и не ответили до конца на мой вопрос об этом математическом методе Эйнштейна.

– Извини, друг, сейчас поправимся. Здесь исходными были всё же (повторимся) здравые мысли о каких-то полях, которые создают вокруг себя все массивные тела. Это – так называемая «полевая концепция» гравитации. Согласно этой концепции, взаимодействие между телами осуществляется через эту самую «промежуточную среду» – поле. Там одно тело создаёт вокруг себя возмущающее поле. Потом это поле создаёт возмущение в соседних точках пространства, и так далее – до самого второго тела, которое затем и притягивается в сторону первого, излучившего это поле. И всё было бы хорошо, если бы Эйнштейну не пришла в голову экзотическая мысль: поскольку гравитация есть во Вселенной везде, и она создаётся «массами», то любое тело, движущееся около каждой из этих масс, будет искривлять свою траекторию. Тут нет пока ничего удивительного: именно об этом же говорит и закон всемирного тяготения. То есть чем ближе тело подлетает к такой «массе», тем более искривляется его путь. Но теперь – та самая экзотика: поскольку весомое тело около массивных тел всё равно искривляет свой путь, то такой процесс можно представить как процесс «скатывания» тела к такой «массе», скатывания – словно школьнику с ледяной горки на санках, с постоянно увеличивающимся ускорением. То есть – словно по кривой поверхности. А для тел, приближающихся к массивному телу с самых разных направлений – словно по некоему искривлённому пространству с увеличивающейся его кривизной по мере приближения к массивному телу. Правда – круто придумано? Вся «крутизна» придумки состоит в том, что здесь Эйнштейн словно бы заменяет гравитационное поле (заменяет его действие) просто «искривлённым пространством». То есть Ньютон-то думал, что пространство везде во Вселенной – как у людей, то есть не косое, не кривое, а самое что ни на есть прямое. Это просто силы для тел будут действовать со стороны гравитации – разные.

– Э, нет, – подумал Эйнштейн, – если мы о силах станем тут говорить, то скатимся к простой плебейской механике. А там надо будет говорить и о скоростях распространения гравитации от массивного тела до того «весомого», которое попало в поле этого массивного. А зачем нам это надо? Вот здесь для нас и нужна не физика, а чистая математика. Если мы математикой свяжем величины гравитирующих (весомых) масс, которые будут искривлять пространство, то мы всю физику гравитации сведём к чистой геометрии «искривлённых пространств». И это только на первый взгляд кажутся неказистыми сами мысли об «искривлённых пространствах». Но для чистых математиков эти пространства, можно сказать, – рядовые. Правда, сама математика тут будет довольно громоздкой. Но эту математику мы свалим на головы математиков. Пусть они нам и обсчитывают по этим громоздким формулам нашу физику. Нам ли заниматься такими мелочами? Нам своё мышление надо экономно расходовать в интересах только физики. И действительно, всё получилось довольно экономно: от ньютоновских «чисто механических» гравитационных сил мы тут избавились, заменив их плавными движениями по кривым геометрическим линиям («геодезическим»), по линиям наших любимых теперь искривлённых пространств. Теперь у меня само пространство заменяет гравитацию. Более того: гравитация теперь – это и есть само пространство. А при движении тел по моим геодезическим линиям, проложенным для этих тел в поле тяготения, тела движутся по инерции и находятся как бы в состоянии невесомости. Вот как ловко гравитация заменяется геометрией пространства. А теперь уже, освободившись в этом пространстве от непонятной физики гравитации, мы спокойно продолжим изучать электромагнитные законы взаимодействия тел. Красиво получилось. Вот она, сила экономии мышления. Займёмся теперь, на манер новенькой «квантовой механики» – нашей будущей могучей «квантовой гравитацией». Когда мы и её освоим, также экономно, то это уже будет полный триумф физики, моей любимой. А триумфатором тем, конечно, буду …, извините, – конечно, будут наши замечательные физики, работающие для простого народа, не покладая рук…..


В чём основной недостаток ОТО? Он – в крайне слабой практической пригодности этой теории для решения насущных, злободневных задач современного человечества. Мы это утверждаем. ОТО плохо применима для практики людей, для каких-то прорывных технологий. ОТО интересна лишь как чистый математический приём. В этом смысле она должна быть более интересна математикам, нежели физикам. Всё это говорит о том, что мы должны избавить современного школьника от изучения им этой негодной для практики теории.

Попробуем доказать эти наши последние утверждения. Поговорим о практической «чувствительности» метода Эйнштейна. Поговорим с точки зрения попытки применения этой «чувствительности» к созданию практических гравитационных приборов, «позарез» необходимых современным (в большей степени) астрофизикам. Для них метод Эйнштейна – это изначальное «мёртворождённое дитя». Чем он может помочь в деле исследования далёкого космоса (а о «близком» космосе здесь вообще говорить не приходится). Действительно, даже гигантской стоимости и сложности гравитационные интерферометры вряд ли смогут эффективно «просвечивать» – сканировать ближний космос. Только далёкий дальний. Но этого нам сейчас явно недостаточно. Мы хотим гравитационно сканировать не только галактики ближнего космоса, но даже «собственную» нашу Землю. Но ОТО здесь имеет такую чувствительность, которая, скручивая – искривляя Землёй пространство (надо же было придумать такую терминологическую ересь?), которая явно не сумеет быть как-то фиксируема учёными.

Дело в том, что для наблюдения любой гравитационной изменчивости чего бы то ни было надо работать (в рамках метода ОТО) с очень-очень крупными «массами» – как излучателями гравитации. Но, как назло, эти массы нельзя по своему желанию заставить колебаться сколько-нибудь быстро. Мы их можем, в лучшем случае, заставить как-то колебаться только с очень низкой для гравитации «скоростью света». Не больше. Но тогда зачем нужна гравитация? Мы и без неё, с помощью «нашего» электромагнетизма, уже умеем замечать любые скорости электромагнитных тел вплоть до световых. Но электромагнитное излучение, уже исследованное нами «вдоль и поперёк», имеет по отношению к гравитации два серьёзных недостатка:

1) электромагнитное излучение имеет низкую (световую) скорость;

2) оно имеет крайне низкую проникающую («просвечивающую») способность; даже частицы нейтрино нам здесь слабые помощники, так как какой-нибудь плотный и разогретый центр Земли будет заметно искажать (не заданно, но хаотически) полёт единичной частицы нейтрино; а разговоры физиков насчёт «свободного прошивания» частицей нейтрино массы Земли тут нам (для точных измерений) будут бесполезны.

Вот почему именно низкая чувствительность метода ОТО заставляет учёных наблюдать лишь за далёкими – предалёкими массивными космическими телами, где для сравнительно быстрых сдвигов – колебаний гигантских «масс» нужны колоссальные энергии, которых даже уже в ближнем космосе негде взять. А если они тут нечаянно объявятся, тогда они сметут всех наших физиков гигантским катаклизмом с поверхности Земли, словно сдутые Кем-то пылинки никчемные, ни на что не годные для планеты этой Космической.

Мы, у себя в философии, продвинувшись в вопросе о чувствительности гравитационного метода исследования значительно дальше физиков, с их передовой ОТО, поговорим об этом ближе к концу данной главы.


Итак, на сегодняшний день нам пока неизвестны сколько-нибудь доходчивые объяснения самой физики явления гравитации. Это и понятно: сегодня практически никто не только из физиков – профессионалов, но даже никто из дилетантов не разрабатывает философию квантовой физики. Квантовая же механика профессионалов отличается от квантовой физики точно так же, как земля отличается от неба. Но только с точки зрения квантовой физики суть явления гравитации становится до смешного простой. Эта простота состоит всего лишь из двух пунктов:

пункт 1) явление гравитации создаётся Природой с помощью созданных Ею же частиц – «элементарных гравитационных квантов» – частиц, отдалённый намёк на которые сквозит в слове – понятии физиков – «гравитон»;

пункт 2) любое гравитационное поле (которое мы в обиходном нашем жаргоне именуем «гравитацией») – это есть поток гравитационных квантов, направленный в пространстве любым электромагнитным телом.

Причём этим «электромагнитным телом» может здесь быть как Вселенная, так и самая малая электромагнитная частица из всех электромагнитных тел – «элементарный квант – частица электромагнитного вакуума – эфира). Даже эта единичная частица, внутри конструкции которой обязательно есть её гравитационное ядро, умеет (именно этим ядром) отклонять путь каждого из гравитационных квантов, мириадами наскакивающих на это ядро и прошивающих его в каждую последующую секунду времени. Но любое заданное отклонение частицы уже можно интерпретировать как поле этой частицы. Частица умеет направлять после себя гравитационные кванты изначально изотропного гравитационного вакуума, налетающие на частицу. Поле – это направленный в пространстве поток квантов-частиц вакуума. Школьник, уже прочитавший второй том нашей «философии», чётко это знает.

Много электромагнитных частиц в любом электромагнитном теле – это значит здесь много направленных квантов гравитации. Но поскольку гравитационный вакуум пронизывает любое электромагнитное тело типа, например, планеты – практически мгновенно, то буквально каждая частица этой планеты – поляризует отклоняет ретранслирует гравитационные кванты после себя вполне «осознанно» – на заданный (хоть и микро-малый, но) угол искривляющейся здесь, на частице, трассы «хаотического» изначального «внешнего» для тела, гравитационного кванта вакуума. Чем больше «масса-сгусток» тела, тем более в нём будет переотражаться на каждой встречной частице гравитационный квант. Тем, следовательно, на большее время он задержится в этом теле, по сравнению с тем исходом, когда бы он не встретил это массивное тело и не задержался бы на нём, пройдя, следовательно, этот участок пространства со своей нормальной гравитационной скоростью за то время, за которое он проходит аналогичный участок в изотропном (без тела) гравитационном вакууме. Но чем больше гравитационных квантов «сейчас», внутри тела, находятся в их задержанном там состоянии, тем больше плотность гравитационных квантов в объёме этого тела. А чем больше квантов находятся там всегда – «сейчас», тем, следовательно, больше «всегда-сейчас» их вылетает оттуда в каждую секунду времени во все стороны от тела. То есть тем больше поток квантов, направленный (а на самом деле – задержанный) этим телом. То есть тем больше Гравитационное поле, «излучаемое» телом. Поле – это направленный поток квантов.