Книга The Notebooks of Leonardo Da Vinci. Complete - читать онлайн бесплатно, автор Leonardo da Vinci. Cтраница 14
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
The Notebooks of Leonardo Da Vinci. Complete
The Notebooks of Leonardo Da Vinci. Complete
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

The Notebooks of Leonardo Da Vinci. Complete

384

No animal can simply move [by its dead weight] a greater weight than the sum of its own weight outside the centre of his fulcrum.

385

A man who wants to send an arrow very far from the bow must be standing entirely on one foot and raising the other so far from the foot he stands on as to afford the requisite counterpoise to his body which is thrown on the front foot. And he must not hold his arm fully extended, and in order that he may be more able to bear the strain he must hold a piece of wood which there is in all crossbows, extending from the hand to the breast, and when he wishes to shoot he suddenly leaps forward at the same instant and extends his arm with the bow and releases the string. And if he dexterously does every thing at once it will go a very long way.

386

When two men are at the opposite ends of a plank that is balanced, and if they are of equal weight, and if one of them wants to make a leap into the air, then his leap will be made down from his end of the plank and the man will never go up again but must remain in his place till the man at the other end dashes up the board.

[Footnote: See Pl. XXIV, No. 3.]

387

Of delivering a blow to the right or left.

[Footnote: Four sketches on Pl. XXIV, No. 1 belong to this passage. The rest of the sketches and notes on that page are of a miscellaneous nature.]

388

Why an impetus is not spent at once [but diminishes] gradually in some one direction? [Footnote 1: The paper has been damaged at the end of line 1.] The impetus acquired in the line a b c d is spent in the line d e but not so completely but that some of its force remains in it and to this force is added the momentum in the line d e with the force of the motive power, and it must follow than the impetus multiplied by the blow is greater that the simple impetus produced by the momentum d e.

[Footnote 8: The sketch No. 2 on Pl. XXIV stands, in the original, between lines 7 and 8. Compare also the sketches on Pl. LIV.] A man who has to deal a great blow with his weapon prepares himself with all his force on the opposite side to that where the spot is which he is to hit; and this is because a body as it gains in velocity gains in force against the object which impedes its motion.

On hair falling down in curls.

389

Observe the motion of the surface of the water which resembles that of hair, and has two motions, of which one goes on with the flow of the surface, the other forms the lines of the eddies; thus the water forms eddying whirlpools one part of which are due to the impetus of the principal current and the other to the incidental motion and return flow.

[Footnote: See Pl. XXV. Where also the text of this passage is given in facsimile.]

On draperies (390—392).

390

OF THE NATURE OF THE FOLDS IN DRAPERY.

That part of a fold which is farthest from the ends where it is confined will fall most nearly in its natural form.

Every thing by nature tends to remain at rest. Drapery, being of equal density and thickness on its wrong side and on its right, has a tendency to lie flat; therefore when you give it a fold or plait forcing it out of its flatness note well the result of the constraint in the part where it is most confined; and the part which is farthest from this constraint you will see relapses most into the natural state; that is to say lies free and flowing.

EXAMPLE.

[Footnote 13: a c sia. In the original text b is written instead of c—an evident slip of the pen.] Let a b c be the fold of the drapery spoken of above, a c will be the places where this folded drapery is held fast. I maintain that the part of the drapery which is farthest from the plaited ends will revert most to its natural form.

Therefore, b being farthest from a and c in the fold a b c it will be wider there than anywhere else.

[Footnote: See Pl. XXVIII, No. 6, and compare the drawing from Windsor Pl. XXX for farther illustration of what is here stated.]

391

OF SMALL FOLDS IN DRAPERIES.

How figures dressed in a cloak should not show the shape so much as that the cloak looks as if it were next the flesh; since you surely cannot wish the cloak to be next the flesh, for you must suppose that between the flesh and the cloak there are other garments which prevent the forms of the limbs appearing distinctly through the cloak. And those limbs which you allow to be seen you must make thicker so that the other garments may appear to be under the cloak. But only give something of the true thickness of the limbs to a nymph [Footnote 9: Una nifa. Compare the beautiful drawing of a Nymph, in black chalk from the Windsor collection, Pl. XXVI.] or an angel, which are represented in thin draperies, pressed and clinging to the limbs of the figures by the action of the wind.

392

You ought not to give to drapery a great confusion of many folds, but rather only introduce them where they are held by the hands or the arms; the rest you may let fall simply where it is its nature to flow; and do not let the nude forms be broken by too many details and interrupted folds. How draperies should be drawn from nature: that is to say if youwant to represent woollen cloth draw the folds from that; and if it is to be silk, or fine cloth or coarse, or of linen or of crape, vary the folds in each and do not represent dresses, as many do, from models covered with paper or thin leather which will deceive you greatly.

[Footnote: The little pen and ink drawing from Windsor (W. 102), given on Pl. XXVIII, No. 7, clearly illustrates the statement made at the beginning of this passage; the writing of the cipher 19 on the same page is in Leonardo's hand; the cipher 21 is certainly not.]

VIII.

Botany for Painters and Elements of Landscape Painting

The chapters composing this portion of the work consist of observations on Form, Light and Shade in Plants, and particularly in Trees summed up in certain general rules by which the author intends to guide the artist in the pictorial representation of landscape.

With these the first principles of a Theory of Landscape painting are laid down—a theory as profoundly thought out in its main lines as it is lucidly worked out in its details. In reading these chapters the conviction is irresistible that such a Botany for painters is or ought to be of similar importance in the practice of painting as the principles of the Proportions and Movements of the human figure i. e. Anatomy for painters.

There can be no doubt that Leonardo, in laying down these rules, did not intend to write on Botany in the proper scientific sense—his own researches on that subject have no place here; it need only be observed that they are easily distinguished by their character and contents from those which are here collected and arranged under the title 'Botany for painters'. In some cases where this division might appear doubtful,—as for instance in No. 402—the Painter is directly addressed and enjoined to take the rule to heart as of special importance in his art.

The original materials are principally derived from MS. G, in which we often find this subject treated on several pages in succession without any of that intermixture of other matters, which is so frequent in Leonardo's writings. This MS., too, is one of the latest; when it was written, the great painter was already more than sixty years of age, so we can scarcely doubt that he regarded all he wrote as his final views on the subject. And the same remark applies to the chapters from MSS. E and M which were also written between 1513—15.

For the sake of clearness, however, it has been desirable to sacrifice—with few exceptions—the original order of the passages as written, though it was with much reluctance and only after long hesitation that I resigned myself to this necessity. Nor do I mean to impugn the logical connection of the author's ideas in his MS.; but it will be easily understood that the sequence of disconnected notes, as they occurred to Leonardo and were written down from time to time, might be hardly satisfactory as a systematic arrangement of his principles. The reader will find in the Appendix an exact account of the order of the chapters in the original MS. and from the data there given can restore them at will. As the materials are here arranged, the structure of the tree as regards the growth of the branches comes first (394-411) and then the insertion of the leaves on the stems (412-419). Then follow the laws of Light and Shade as applied, first, to the leaves (420-434), and, secondly, to the whole tree and to groups of trees (435-457). After the remarks on the Light and Shade in landscapes generally (458-464), we find special observations on that of views of towns and buildings (465-469). To the theory of Landscape Painting belong also the passages on the effect of Wind on Trees (470-473) and on the Light and Shade of Clouds (474-477), since we find in these certain comparisons with the effect of Light and Shade on Trees (e. g.: in No. 476, 4. 5; and No. 477, 9. 12). The chapters given in the Appendix Nos. 478 and 481 have hardly any connection with the subjects previously treated.

Classification of trees.

393

TREES.

Small, lofty, straggling, thick, that is as to foliage, dark, light, russet, branched at the top; some directed towards the eye, some downwards; with white stems; this transparent in the air, that not; some standing close together, some scattered.

The relative thickness of the branches to the trunk (393—396).

394

All the branches of a tree at every stage of its height when put together are equal in thickness to the trunk [below them].

All the branches of a water [course] at every stage of its course, if they are of equal rapidity, are equal to the body of the main stream.

395

Every year when the boughs of a plant [or tree] have made an end of maturing their growth, they will have made, when put together, a thickness equal to that of the main stem; and at every stage of its ramification you will find the thickness of the said main stem; as: i k, g h, e f, c d, a b, will always be equal to each other; unless the tree is pollard—if so the rule does not hold good.

All the branches have a direction which tends to the centre of the tree m.

[Footnote: The two sketches of leafless trees one above another on the left hand side of Pl. XXVII, No. 1, belong to this passage.]

396

If the plant n grows to the thickness shown at m, its branches will correspond [in thickness] to the junction a b in consequence of the growth inside as well as outside.

The branches of trees or plants have a twist wherever a minor branch is given off; and this giving off the branch forms a fork; this said fork occurs between two angles of which the largest will be that which is on the side of the larger branch, and in proportion, unless accident has spoilt it.

[Footnote: The sketches illustrating this are on the right hand side of PI. XXVII, No. I, and the text is also given there in facsimile.]

397

There is no boss on branches which has not been produced by some branch which has failed.

The lower shoots on the branches of trees grow more than the upper ones and this occurs only because the sap that nourishes them, being heavy, tends downwards more than upwards; and again, because those [branches] which grow downwards turn away from the shade which exists towards the centre of the plant. The older the branches are, the greater is the difference between their upper and their lower shoots and in those dating from the same year or epoch.

[Footnote: The sketch accompanying this in the MS. is so effaced that an exact reproduction was impossible.]

398

OF THE SCARS ON TREES.

The scars on trees grow to a greater thickness than is required by the sap of the limb which nourishes them.

399

The plant which gives out the smallest ramifications will preserve the straightest line in the course of its growth.

[Footnote: This passage is illustrated by two partly effaced sketches. One of these closely resembles the lower one given under No. 408, the other also represents short closely set boughs on an upright trunk.]

400

OF THE RAMIFICATION.

The beginning of the ramification [the shoot] always has the central line [axis] of its thickness directed to the central line [axis] of the plant itself.

401

In starting from the main stem the branches always form a base with a prominence as is shown at a b c d.

402

WHY, VERY FREQUENTLY, TIMBER HAS VEINS THAT ARE NOT STRAIGHT.

When the branches which grow the second year above the branch of the preceding year, are not of equal thickness above the antecedent branches, but are on one side, then the vigour of the lower branch is diverted to nourish the one above it, although it may be somewhat on one side.

But if the ramifications are equal in their growth, the veins of the main stem will be straight [parallel] and equidistant at every degree of the height of the plant.

Wherefore, O Painter! you, who do not know these laws! in order to escape the blame of those who understand them, it will be well that you should represent every thing from nature, and not despise such study as those do who work [only] for money.

The direction of growth (403-407).

403

OF THE RAMIFICATIONS OF PLANTS.

The plants which spread very much have the angles of the spaces which divide their branches more obtuse in proportion as their point of origin is lower down; that is nearer to the thickest and oldest portion of the tree. Therefore in the youngest portions of the tree the angles of ramification are more acute. [Footnote: Compare the sketches on the lower portion of Pl. XXVII, No. 2.]

404

The tips of the boughs of plants [and trees], unless they are borne down by the weight of their fruits, turn towards the sky as much as possible.

The upper side of their leaves is turned towards the sky that it may receive the nourishment of the dew which falls at night.

The sun gives spirit and life to plants and the earth nourishes them with moisture. [9] With regard to this I made the experiment of leaving only one small root on a gourd and this I kept nourished with water, and the gourd brought to perfection all the fruits it could produce, which were about 60 gourds of the long kind, andi set my mind diligently [to consider] this vitality and perceived that the dews of night were what supplied it abundantly with moisture through the insertion of its large leaves and gave nourishment to the plant and its offspring—or the seeds which its offspring had to produce—[21].

The rule of the leaves produced on the last shoot of the year will be that they will grow in a contrary direction on the twin branches; that is, that the insertion of the leaves turns round each branch in such a way, as that the sixth leaf above is produced over the sixth leaf below, and the way they turn is that if one turns towards its companion to the right, the other turns to the left, the leaf serving as the nourishing breast for the shoot or fruit which grows the following year.

[Footnote: A French translation of lines 9-12 was given by M. RAVAISSON in the Gazette des Beaux Arts, Oct. 1877; his paper also contains some valuable information as to botanical science in the ancient classical writers and at the time of the Renaissance.]

405

The lowest branches of those trees which have large leaves and heavy fruits, such as nut-trees, fig-trees and the like, always droop towards the ground.

The branches always originate above [in the axis of] the leaves.

406

The upper shoots of the lateral branches of plants lie closer to the parent branch than the lower ones.

407

The lowest branches, after they have formed the angle of their separation from the parent stem, always bend downwards so as not to crowd against the other branches which follow them on the same stem and to be better able to take the air which nourishes them. As is shown by the angle b a c; the branch a c after it has made the corner of the angle a c bends downwards to c d and the lesser shoot c dries up, being too thin.

The main branch always goes below, as is shown by the branch f n m, which does not go to f n o.

The forms of trees (408—411).

408

The elm always gives a greater length to the last branches of the year's growth than to the lower ones; and Nature does this because the highest branches are those which have to add to the size of the tree; and those at the bottom must get dry because they grow in the shade and their growth would be an impediment to the entrance of the solar rays and the air among the main branches of the tree.

The main branches of the lower part bend down more than those above, so as to be more oblique than those upper ones, and also because they are larger and older.

409

In general almost all the upright portions of trees curve somewhat turning the convexity towards the South; and their branches are longer and thicker and more abundant towards the South than towards the North. And this occurs because the sun draws the sap towards that surface of the tree which is nearest to it.

And this may be observed if the sun is not screened off by other plants.

410

The cherry-tree is of the character of the fir tree as regards its ramification placed in stages round its main stem; and its branches spring, 4 or five or 6 [together] opposite each other; and the tips of the topmost shoots form a pyramid from the middle upwards; and the walnut and oak form a hemisphere from the middle upwards.

411

The bough of the walnut which is only hit and beaten when it has brought to perfection…

[Footnote: The end of the text and the sketch in red chalk belonging to it, are entirely effaced.]

The insertion of the leaves (412—419).

412

OF THE INSERTION OF THE BRANCHES ON PLANTS.

Such as the growth of the ramification of plants is on their principal branches, so is that of the leaves on the shoots of the same plant. These leaves have [Footnote 6: Quattro modi (four modes). Only three are described in the text, the fourth is only suggested by a sketch.

This passage occurs in MANZI'S edition of the Trattato, p. 399, but without the sketches and the text is mutilated in an important part. The whole passage has been commented on, from MANZI'S version, in Part I of the Nuovo Giornale Botanico Italiano, by Prof. G. UZIELLI (Florence 1869, Vol. I). He remarks as to the 'four modes': "Leonardo, come si vede nelle linie sententi da solo tre esempli. Questa ed altre inessattezze fanno desiderare, sia esaminato di nuovo il manoscritto Vaticano". This has since been done by D. KNAPP of Tubingen, and his accurate copy has been published by H. LUDWIG, the painter. The passage in question occurs in his edition as No. 833; and there also the drawings are wanting. The space for them has been left vacant, but in the Vatican copy 'niente' has been written on the margin; and in it, as well as in LUDWIG'S and MANZI'S edition, the text is mutilated.] four modes of growing one above another. The first, which is the most general, is that the sixth always originates over the sixth below [Footnote 8: la sesta di sotto. "Disposizione 2/5 o 1/5. Leonardo osservo probabilmente soltanto la prima" (UZIELLl).]; the second is that two third ones above are over the two third ones below [Footnote 10: terze di sotto: "Intende qui senza dubbio parlare di foglie decussate, in cui il terzo verticello e nel piano del primo" (UZIELLI).]; and the third way is that the third above is over the third below [Footnote 11: 3a di sotto: "Disposizione 1/2" (UZIELLI).].

[Footnote: See the four sketches on the upper portion of the page reproduced as fig. 2 on P1. XXVII.]

413

A DESCRIPTION OF THE ELM.

The ramification of the elm has the largest branch at the top. The first and the last but one are smaller, when the main trunk is straight.

The space between the insertion of one leaf to the rest is half the extreme length of the leaf or somewhat less, for the leaves are at an interval which is about the 3rd of the width of the leaf.

The elm has more leaves near the top of the boughs than at the base; and the broad [surface] of the leaves varies little as to [angle and] aspect.

[Footnote: See Pl. XXVII, No. 3. Above the sketch and close under the number of the page is the word 'olmo' (elm).]

414

In the walnut tree the leaves which are distributed on the shoots of this year are further apart from each other and more numerous in proportion as the branch from which this shoot springs is a young one. And they are inserted more closely and less in number when the shoot that bears them springs from an old branch. Its fruits are borne at the ends of the shoots. And its largest boughs are the lowest on the boughs they spring from. And this arises from the weight of its sap which is more apt to descend than to rise, and consequently the branches which spring from them and rise towards the sky are small and slender [20]; and when the shoot turns towards the sky its leaves spread out from it [at an angle] with an equal distribution of their tips; and if the shoot turns to the horizon the leaves lie flat; and this arises from the fact that leaves without exception, turn their underside to the earth [29].

The shoots are smaller in proportion as they spring nearer to the base of the bough they spring from.

[Footnote: See the two sketches on Pl XXVII, No. 4. The second refers to the passage lines 20-30.]

415

OF THE INSERTION OF THE LEAVES ON THE BRANCHES.

The thickness of a branch never diminishes within the space between one leaf and the next excepting by so much as the thickness of the bud which is above the leaf and this thickness is taken off from the branch above [the node] as far as the next leaf.

Nature has so placed the leaves of the latest shoots of many plants that the sixth leaf is always above the first, and so on in succession, if the rule is not [accidentally] interfered with; and this occurs for two useful ends in the plant: First that as the shoot and the fruit of the following year spring from the bud or eye which lies above and in close contact with the insertion of the leaf [in the axil], the water which falls upon the shoot can run down to nourish the bud, by the drop being caught in the hollow [axil] at the insertion of the leaf. And the second advantage is, that as these shoots develop in the following year one will not cover the next below, since the 5 come forth on five different sides; and the sixth which is above the first is at some distance.

416

OF THE RAMIFICATIONS OF TREES AND THEIR FOLIAGE.

The ramifications of any tree, such as the elm, are wide and slender after the manner of a hand with spread fingers, foreshortened. And these are seen in the distribution [thus]: the lower portions are seen from above; and those that are above are seen from below; and those in the middle, some from below and some from above. The upper part is the extreme [top] of this ramification and the middle portion is more foreshortened than any other of those which are turned with their tips towards you. And of those parts of the middle of the height of the tree, the longest will be towards the top of the tree and will produce a ramification like the foliage of the common willow, which grows on the banks of rivers.