11
Though I may not, like them, be able to quote other authors, I shall rely on that which is much greater and more worthy:—on experience, the mistress of their Masters. They go about puffed up and pompous, dressed and decorated with [the fruits], not of their own labours, but of those of others. And they will not allow me my own. They will scorn me as an inventor; but how much more might they—who are not inventors but vaunters and declaimers of the works of others—be blamed.
INTRODUCTION.
And those men who are inventors and interpreters between Nature and Man, as compared with boasters and declaimers of the works of others, must be regarded and not otherwise esteemed than as the object in front of a mirror, when compared with its image seen in the mirror. For the first is something in itself, and the other nothingness.—Folks little indebted to Nature, since it is only by chance that they wear the human form and without it I might class them with the herds of beasts.
12
Many will think they may reasonably blame me by alleging that my proofs are opposed to the authority of certain men held in the highest reverence by their inexperienced judgments; not considering that my works are the issue of pure and simple experience, who is the one true mistress. These rules are sufficient to enable you to know the true from the false—and this aids men to look only for things that are possible and with due moderation—and not to wrap yourself in ignorance, a thing which can have no good result, so that in despair you would give yourself up to melancholy.
13
Among all the studies of natural causes and reasons Light chiefly delights the beholder; and among the great features of Mathematics the certainty of its demonstrations is what preeminently (tends to) elevate the mind of the investigator. Perspective, therefore, must be preferred to all the discourses and systems of human learning. In this branch [of science] the beam of light is explained on those methods of demonstration which form the glory not so much of Mathematics as of Physics and are graced with the flowers of both [Footnote: 5. Such of Leonardo's notes on Optics or on Perspective as bear exclusively on Mathematics or Physics could not be included in the arrangement of the libro di pittura which is here presented to the reader. They are however but few.]. But its axioms being laid down at great length, I shall abridge them to a conclusive brevity, arranging them on the method both of their natural order and of mathematical demonstration; sometimes by deduction of the effects from the causes, and sometimes arguing the causes from the effects; adding also to my own conclusions some which, though not included in them, may nevertheless be inferred from them. Thus, if the Lord—who is the light of all things—vouchsafe to enlighten me, I will treat of Light; wherefore I will divide the present work into 3 Parts [Footnote: 10. In the middle ages—for instance, by ROGER BACON, by VITELLONE, with whose works Leonardo was certainly familiar, and by all the writers of the Renaissance Perspective and Optics were not regarded as distinct sciences. Perspective, indeed, is in its widest application the science of seeing. Although to Leonardo the two sciences were clearly separate, it is not so as to their names; thus we find axioms in Optics under the heading Perspective. According to this arrangement of the materials for the theoretical portion of the libro di pittura propositions in Perspective and in Optics stand side by side or occur alternately. Although this particular chapter deals only with Optics, it is not improbable that the words partirň la presente opera in 3 parti may refer to the same division into three sections which is spoken of in chapters 14 to 17.].
The plan of the book on Painting (14—17).
14
ON THE THREE BRANCHES OF PERSPECTIVE.
There are three branches of perspective; the first deals with the reasons of the (apparent) diminution of objects as they recede from the eye, and is known as Diminishing Perspective.—The second contains the way in which colours vary as they recede from the eye. The third and last is concerned with the explanation of how the objects [in a picture] ought to be less finished in proportion as they are remote (and the names are as follows):
Linear Perspective. The Perspective of Colour. The Perspective of Disappearance.
[Footnote: 13. From the character of the handwriting I infer that this passage was written before the year 1490.].
15
ON PAINTING AND PERSPECTIVE.
The divisions of Perspective are 3, as used in drawing; of these, the first includes the diminution in size of opaque objects; the second treats of the diminution and loss of outline in such opaque objects; the third, of the diminution and loss of colour at long distances.
[Footnote: The division is here the same as in the previous chapter No. 14, and this is worthy of note when we connect it with the fact that a space of about 20 years must have intervened between the writing of the two passages.]
16
THE DISCOURSE ON PAINTING.
Perspective, as bearing on drawing, is divided into three principal sections; of which the first treats of the diminution in the size of bodies at different distances. The second part is that which treats of the diminution in colour in these objects. The third [deals with] the diminished distinctness of the forms and outlines displayed by the objects at various distances.
17
ON THE SECTIONS OF [THE BOOK ON] PAINTING.
The first thing in painting is that the objects it represents should appear in relief, and that the grounds surrounding them at different distances shall appear within the vertical plane of the foreground of the picture by means of the 3 branches of Perspective, which are: the diminution in the distinctness of the forms of the objects, the diminution in their magnitude; and the diminution in their colour. And of these 3 classes of Perspective the first results from [the structure of] the eye, while the other two are caused by the atmosphere which intervenes between the eye and the objects seen by it. The second essential in painting is appropriate action and a due variety in the figures, so that the men may not all look like brothers, &c.
[Footnote: This and the two foregoing chapters must have been written in 1513 to 1516. They undoubtedly indicate the scheme which Leonardo wished to carry out in arranging his researches on Perspective as applied to Painting. This is important because it is an evidence against the supposition of H. LUDWIG and others, that Leonardo had collected his principles of Perspective in one book so early as before 1500; a Book which, according to the hypothesis, must have been lost at a very early period, or destroyed possibly, by the French (!) in 1500 (see H. LUDWIG. L. da Vinci: Das Buch van der Malerei. Vienna 1882 III, 7 and 8).]
The use of the book on Painting.
18
These rules are of use only in correcting the figures; since every man makes some mistakes in his first compositions and he who knows them not, cannot amend them. But you, knowing your errors, will correct your works and where you find mistakes amend them, and remember never to fall into them again. But if you try to apply these rules in composition you will never make an end, and will produce confusion in your works.
These rules will enable you to have a free and sound judgment; since good judgment is born of clear understanding, and a clear understanding comes of reasons derived from sound rules, and sound rules are the issue of sound experience—the common mother of all the sciences and arts. Hence, bearing in mind the precepts of my rules, you will be able, merely by your amended judgment, to criticise and recognise every thing that is out of proportion in a work, whether in the perspective or in the figures or any thing else.
Necessity of theoretical knowledge (19. 20).
19
OF THE MISTAKES MADE BY THOSE WHO PRACTISE WITHOUT KNOWLEDGE.
Those who are in love with practice without knowledge are like the sailor who gets into a ship without rudder or compass and who never can be certain whether he is going. Practice must always be founded on sound theory, and to this Perspective is the guide and the gateway; and without this nothing can be done well in the matter of drawing.
20
The painter who draws merely by practice and by eye, without any reason, is like a mirror which copies every thing placed in front of it without being conscious of their existence.
The function of the eye (21-23).
21
INTRODUCTION TO PERSPECTIVE:—THAT IS OF THE FUNCTION OF THE EYE.
Behold here O reader! a thing concerning which we cannot trust our forefathers, the ancients, who tried to define what the Soul and Life are—which are beyond proof, whereas those things, which can at any time be clearly known and proved by experience, remained for many ages unknown or falsely understood. The eye, whose function we so certainly know by experience, has, down to my own time, been defined by an infinite number of authors as one thing; but I find, by experience, that it is quite another. [Footnote 13: Compare the note to No. 70.]
[Footnote: In section 13 we already find it indicated that the study of Perspective and of Optics is to be based on that of the functions of the eye. Leonardo also refers to the science of the eye, in his astronomical researches, for instance in MS. F 25b 'Ordine del provare la terra essere una stella: Imprima difinisce l'occhio', &c. Compare also MS. E 15b and F 60b. The principles of astronomical perspective.]
22
Here [in the eye] forms, here colours, here the character of every part of the universe are concentrated to a point; and that point is so marvellous a thing … Oh! marvellous, O stupendous Necessity—by thy laws thou dost compel every effect to be the direct result of its cause, by the shortest path. These [indeed] are miracles;…
In so small a space it can be reproduced and rearranged in its whole expanse. Describe in your anatomy what proportion there is between the diameters of all the images in the eye and the distance from them of the crystalline lens.
23
OF THE 10 ATTRIBUTES OF THE EYE, ALL CONCERNED IN PAINTING.
Painting is concerned with all the 10 attributes of sight; which are:—Darkness, Light, Solidity and Colour, Form and Position, Distance and Propinquity, Motion and Rest. This little work of mine will be a tissue [of the studies] of these attributes, reminding the painter of the rules and methods by which he should use his art to imitate all the works of Nature which adorn the world.
24
ON PAINTING.
Variability of the eye.
1st. The pupil of the eye contracts, in proportion to the increase of light which is reflected in it. 2nd. The pupil of the eye expands in proportion to the diminution in the day light, or any other light, that is reflected in it. 3rd. [Footnote: 8. The subject of this third proposition we find fully discussed in MS. G. 44a.]. The eye perceives and recognises the objects of its vision with greater intensity in proportion as the pupil is more widely dilated; and this can be proved by the case of nocturnal animals, such as cats, and certain birds—as the owl and others—in which the pupil varies in a high degree from large to small, &c., when in the dark or in the light. 4th. The eye [out of doors] in an illuminated atmosphere sees darkness behind the windows of houses which [nevertheless] are light. 5th. All colours when placed in the shade appear of an equal degree of darkness, among themselves. 6th. But all colours when placed in a full light, never vary from their true and essential hue.
25
OF THE EYE.
Focus of sight.
If the eye is required to look at an object placed too near to it, it cannot judge of it well—as happens to a man who tries to see the tip of his nose. Hence, as a general rule, Nature teaches us that an object can never be seen perfectly unless the space between it and the eye is equal, at least, to the length of the face.
Differences of perception by one eye and by both eyes (26-29).
26
OF THE EYE.
When both eyes direct the pyramid of sight to an object, that object becomes clearly seen and comprehended by the eyes.
27
Objects seen by one and the same eye appear sometimes large, and sometimes small.
28
The motion of a spectator who sees an object at rest often makes it seem as though the object at rest had acquired the motion of the moving body, while the moving person appears to be at rest.
ON PAINTING.
Objects in relief, when seen from a short distance with one eye, look like a perfect picture. If you look with the eye a, b at the spot c, this point c will appear to be at d, f, and if you look at it with the eye g, h will appear to be at m. A picture can never contain in itself both aspects.
29
Let the object in relief t be seen by both eyes; if you will look at the object with the right eye m, keeping the left eye n shut, the object will appear, or fill up the space, at a; and if you shut the right eye and open the left, the object (will occupy the) space b; and if you open both eyes, the object will no longer appear at a or b, but at e, r, f. Why will not a picture seen by both eyes produce the effect of relief, as [real] relief does when seen by both eyes; and why should a picture seen with one eye give the same effect of relief as real relief would under the same conditions of light and shade?
[Footnote: In the sketch, m is the left eye and n the right, while the text reverses this lettering. We must therefore suppose that the face in which the eyes m and n are placed is opposite to the spectator.]
30
The comparative size of the image depends on the amount of light (30-39).
The eye will hold and retain in itself the image of a luminous body better than that of a shaded object. The reason is that the eye is in itself perfectly dark and since two things that are alike cannot be distinguished, therefore the night, and other dark objects cannot be seen or recognised by the eye. Light is totally contrary and gives more distinctness, and counteracts and differs from the usual darkness of the eye, hence it leaves the impression of its image.
31
Every object we see will appear larger at midnight than at midday, and larger in the morning than at midday.
This happens because the pupil of the eye is much smaller at midday than at any other time.
32
The pupil which is largest will see objects the largest. This is evident when we look at luminous bodies, and particularly at those in the sky. When the eye comes out of darkness and suddenly looks up at these bodies, they at first appear larger and then diminish; and if you were to look at those bodies through a small opening, you would see them smaller still, because a smaller part of the pupil would exercise its function.
[Footnote: 9. buso in the Lomb. dialect is the same as buco.]
33
When the eye, coming out of darkness suddenly sees a luminous body, it will appear much larger at first sight than after long looking at it. The illuminated object will look larger and more brilliant, when seen with two eyes than with only one. A luminous object will appear smaller in size, when the eye sees it through a smaller opening. A luminous body of an oval form will appear rounder in proportion as it is farther from the eye.
34
Why when the eye has just seen the light, does the half light look dark to it, and in the same way if it turns from the darkness the half light look very bright?
35
ON PAINTING.
If the eye, when [out of doors] in the luminous atmosphere, sees a place in shadow, this will look very much darker than it really is. This happens only because the eye when out in the air contracts the pupil in proportion as the atmosphere reflected in it is more luminous. And the more the pupil contracts, the less luminous do the objects appear that it sees. But as soon as the eye enters into a shady place the darkness of the shadow suddenly seems to diminish. This occurs because the greater the darkness into which the pupil goes the more its size increases, and this increase makes the darkness seem less.
[Footnote 14: La luce entrerŕ. Luce occurs here in the sense of pupil of the eye as in no 51: C. A. 84b; 245a; I—5; and in many other places.]
36
ON PERSPECTIVE.
The eye which turns from a white object in the light of the sun and goes into a less fully lighted place will see everything as dark. And this happens either because the pupils of the eyes which have rested on this brilliantly lighted white object have contracted so much that, given at first a certain extent of surface, they will have lost more than 3/4 of their size; and, lacking in size, they are also deficient in [seeing] power. Though you might say to me: A little bird (then) coming down would see comparatively little, and from the smallness of his pupils the white might seem black! To this I should reply that here we must have regard to the proportion of the mass of that portion of the brain which is given up to the sense of sight and to nothing else. Or—to return—this pupil in Man dilates and contracts according to the brightness or darkness of (surrounding) objects; and since it takes some time to dilate and contract, it cannot see immediately on going out of the light and into the shade, nor, in the same way, out of the shade into the light, and this very thing has already deceived me in painting an eye, and from that I learnt it.
37
Experiment [showing] the dilatation and contraction of the pupil, from the motion of the sun and other luminaries. In proportion as the sky is darker the stars appear of larger size, and if you were to light up the medium these stars would look smaller; and this difference arises solely from the pupil which dilates and contracts with the amount of light in the medium which is interposed between the eye and the luminous body. Let the experiment be made, by placing a candle above your head at the same time that you look at a star; then gradually lower the candle till it is on a level with the ray that comes from the star to the eye, and then you will see the star diminish so much that you will almost lose sight of it.
[Footnote: No reference is made in the text to the letters on the accompanying diagram.]
38
The pupil of the eye, in the open air, changes in size with every degree of motion from the sun; and at every degree of its changes one and the same object seen by it will appear of a different size; although most frequently the relative scale of surrounding objects does not allow us to detect these variations in any single object we may look at.
39
The eye—which sees all objects reversed—retains the images for some time. This conclusion is proved by the results; because, the eye having gazed at light retains some impression of it. After looking (at it) there remain in the eye images of intense brightness, that make any less brilliant spot seem dark until the eye has lost the last trace of the impression of the stronger light.
II.
Linear Perspective
We see clearly from the concluding sentence of section 49, where the author directly addresses the painter, that he must certainly have intended to include the elements of mathematics in his Book on the art of Painting. They are therefore here placed at the beginning. In section 50 the theory of the "Pyramid of Sight" is distinctly and expressly put forward as the fundamental principle of linear perspective, and sections 52 to 57 treat of it fully. This theory of sight can scarcely be traced to any author of antiquity. Such passages as occur in Euclid for instance, may, it is true, have proved suggestive to the painters of the Renaissance, but it would be rash to say any thing decisive on this point.
Leon Battista Alberti treats of the "Pyramid of Sight" at some length in his first Book of Painting; but his explanation differs widely from Leonardo's in the details. Leonardo, like Alberti, may have borrowed the broad lines of his theory from some views commonly accepted among painters at the time; but he certainly worked out its application in a perfectly original manner.
The axioms as to the perception of the pyramid of rays are followed by explanations of its origin, and proofs of its universal application (58—69). The author recurs to the subject with endless variations; it is evidently of fundamental importance in his artistic theory and practice. It is unnecessary to discuss how far this theory has any scientific value at the present day; so much as this, at any rate, seems certain: that from the artist's point of view it may still claim to be of immense practical utility.
According to Leonardo, on one hand, the laws of perspective are an inalienable condition of the existence of objects in space; on the other hand, by a natural law, the eye, whatever it sees and wherever it turns, is subjected to the perception of the pyramid of rays in the form of a minute target. Thus it sees objects in perspective independently of the will of the spectator, since the eye receives the images by means of the pyramid of rays "just as a magnet attracts iron".
In connection with this we have the function of the eye explained by the Camera obscura, and this is all the more interesting and important because no writer previous to Leonardo had treated of this subject_ (70—73). Subsequent passages, of no less special interest, betray his knowledge of refraction and of the inversion of the image in the camera and in the eye (74—82).
From the principle of the transmission of the image to the eye and to the camera obscura he deduces the means of producing an artificial construction of the pyramid of rays or—which is the same thing—of the image. The fundamental axioms as to the angle of sight and the vanishing point are thus presented in a manner which is as complete as it is simple and intelligible (86—89).
Leonardo distinguishes between simple and complex perspective (90, 91). The last sections treat of the apparent size of objects at various distances and of the way to estimate it (92—109).
General remarks on perspective (40-41).
40
ON PAINTING.
Perspective is the best guide to the art of Painting.
[Footnote: 40. Compare 53, 2.]
41
The art of perspective is of such a nature as to make what is flat appear in relief and what is in relief flat.
The elements of perspective—Of the Point (42-46).
42
All the problems of perspective are made clear by the five terms of mathematicians, which are:—the point, the line, the angle, the superficies and the solid. The point is unique of its kind. And the point has neither height, breadth, length, nor depth, whence it is to be regarded as indivisible and as having no dimensions in space. The line is of three kinds, straight, curved and sinuous and it has neither breadth, height, nor depth. Hence it is indivisible, excepting in its length, and its ends are two points. The angle is the junction of two lines in a point.
43
A point is not part of a line.
44
OF THE NATURAL POINT.
The smallest natural point is larger than all mathematical points, and this is proved because the natural point has continuity, and any thing that is continuous is infinitely divisible; but the mathematical point is indivisible because it has no size.