Книга Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, Andrew Gelman — скачать онлайн в pdf, epub, fb2, txt бесплатно в электронной библиотеке Fantasy Worlds.
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
Поиск
Найти

Andrew Gelman - Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Автор: Andrew Gelman
Название: Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату
Автор: Andrew Gelman
Название: Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives
Аннотация на книгу:

This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.

Добавленo: Рейтинг: Будь первым, кто оценит книгу Комментариев 0 шт.

Оcтавить отзыв