Книга Astronomical Curiosities: Facts and Fallacies - читать онлайн бесплатно, автор John Gore. Cтраница 2
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
Astronomical Curiosities: Facts and Fallacies
Astronomical Curiosities: Facts and Fallacies
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

Astronomical Curiosities: Facts and Fallacies

A white spot near the planet’s south pole was seen on several occasions by H. C. Russell in May and June, 1876.36

Photographs of Venus taken on March 18 and April 29, 1908, by M. Quénisset at the Observatory of Juvissy, France, show a white polar spot. The spot was also seen at the same observatory by M. A. Benoit on May 20, 1903.

The controversy on the period of rotation of Venus, or the length of its day, is a very curious one and has not yet been decided. Many good observers assert confidently that it is short (about 24 hours); while others affirm with equal confidence that it is long (about 225 days, the period of the planet’s revolution round the sun). Among the observers who favour the short period of rotation are: D. Cassini (1667), J. Cassini (1730), Schröter (1788-93), Mädler (1836), De Vico (1840?) Trouvelot (1871-79), Flammarion, Léo Brenner, Stanley Williams, and J. McHarg; and among those who support the long period are: Bianchini (1727), Schiaparelli, Cerulli, Tacchini, Mascari, and Lowell. Some recent spectroscopic observations seem to favour the short period.

Flammarion thinks that “nothing certain can be descried upon the surface of Venus, and that whatever has hitherto been written regarding its period of rotation must be considered null and void”; and again he says, “Nothing can be affirmed regarding the rotation of Venus, inasmuch as the absorption of its immense atmosphere certainly prevents any detail on its surface from being perceived.”37

The eminent Swedish physicist Arrhenius thinks, however, that the dense atmosphere and clouds of Venus are in favour of a rapid rotation on its axis.38 He thinks that the mean temperature of Venus may “not differ much from the calculated temperature 104° F.” “Under these circumstances the assumption would appear plausible that a very considerable portion of the surface of Venus, and particularly the districts about the poles, would be favourable to organic life.”39

The “secondary light of Venus,” or the visibility of the dark side, seems to have been first mentioned by Derham in his Astro Theology published in 1715. He speaks of the visibility of the dark part of the planet’s disc “by the aid of a light of a somewhat dull and ruddy colour.” The date of Derham’s observation is not given, but it seems to have been previous to the year 1714. The light seems to have been also seen by a friend of Derham. We next find observations by Christfried Kirch, assistant astronomer to the Berlin Academy of Sciences, on June 7, 1721, and March 8, 1726. These observations are found in his original papers, and were printed in the Astronomische Nachrichten, No. 1586. On the first date the telescopic image of the planet was “rather tremulous,” but in 1726 he noticed that the dark part of the circle seemed to belong to a smaller circle than the illuminated portion of the disc.40 The same effect was also noted by Webb.41 A similar illusion is seen in the case of the crescent moon, and this has given rise to the saying, “the old moon in the new moon’s arms.”

We next come, in order of date, to an observation made by Andreas Mayer, Professor of Mathematics at Griefswald in Prussia. The observation was made on October 20, 1759, and the dark part of Venus was seen distinctly by Mayer. As the planet’s altitude at the time was not more than 14° above the horizon, and its apparent distance from the sun only 10°, the phenomenon – as Professor Safarik has pointed out – “must have had a most unusual intensity.”

Sir William Herschel makes no mention of having ever seen the “secondary light” of Venus, although he noticed the extension of the horns beyond a semicircle.

In the spring and summer of the year 1793, Von Hahn of Remplin in Mecklenburg, using excellent telescopes made by Dollond and Herschel, saw the dark part of Venus on several occasions, and describes the light as “grey verging upon brown.”

Schröter of Lilienthal – the famous observer of the moon – saw the horns of the crescent of Venus extended many degrees beyond the semicircle on several occasions in 1784 and 1795, and the border of the dark part faintly lit up by a dusky grey light. On February 14, 1806, at 7 P.M. he saw the whole of the dark part visible with an ash-coloured light, and he was satisfied that there was no illusion. On January 24 of the same year, 1806, Harding at Göttingen, using a reflector of 9 inches aperture and power 84, saw the dark side of Venus “shining with a pale ash-coloured light,” and very visible against the dark background of the sky. The appearance was seen with various magnifying powers, and he thought that there could be no illusion. In fact the phenomenon was as evident as in the case of the moon. Harding again saw it on February 28 of the same year, the illumination being of a reddish grey colour, “like that of the moon in a total eclipse.”

The “secondary light” was also seen by Pastorff in 1822, and by Gruithuisen in 1825. Since 1824 observations of the “light” were made by Berry, Browning, Guthrie, Langdon, Noble, Prince, Webb, and others. Webb saw it with powers of 90 and 212 on a 9·38-inch mirror, and found it “equally visible when the bright crescent was hidden by a field bar.”42

Captain Noble’s observation was rather unique. He found that the dark side was “always distinctly and positively darker than the background upon which it is projected.”

The “light” was also seen by Lyman in America in 1867, and by Safarik at Prague. In 1871 the whole disc of Venus was seen by Professor Winnecke.43 On the other hand, Winnecke stated that he only saw it twice in 24 years; and the great observers Dawes and Mädler never saw it at all!44

Various attempts have been made to explain the visibility – at times – of the “dark side” of Venus. The following may be mentioned45: – (1) Reflected earth-light, analogous to the dark side of the crescent moon. This explanation was advocated by Harding, Schröter, and others. But, although the earth is undoubtedly a bright object in the sky of Venus, the explanation is evidently quite inadequate. (2) Phosphorescence of the planet’s atmosphere. This has been suggested by some observers. (3) Visibility by contrast, a theory advanced by the great French astronomer Arago. (4) Illumination of the planet’s surface by an aurora borealis. This also seems rather inadequate, but would account for the light being sometimes visible and sometimes not. (5) Luminosity of the oceans – if there be any – on Venus. But this also seems inadequate. (6) A planetary surface glowing with intense heat. But this seems improbable. (7) The Kunstliche Feuer (artificial fire) of Gruithuisen, a very fanciful theory. Flammarion thinks that the visibility of the dark side may perhaps be explained by its projection on a somewhat lighter background, such as the zodiacal light, or an extended solar envelope.46

It will be seen that none of these explanations are entirely satisfactory, and the phenomenon, if real, remains a sort of astronomical enigma. The fact that the “light” is visible on some occasions and not on others would render some of the explanations improbable or even inadmissible. But the condition of the earth’s atmosphere at times might account for its invisibility on many occasions.

A curious suggestion was made by Zöllner, namely, that if the secondary light of Venus could be observed with the spectroscope it would show bright lines! But such an observation would be one of extreme difficulty.

M. Hansky finds that the visibility of the “light” is greater during periods of maximum solar activity – that is, at the maxima of sun spots. This he explains by the theory of Arrhenius, in which electrified “ions emitted by the sun cause the phenomena of terrestrial magnetic storms and auroras.” “In the same way the dense atmosphere of Venus is rendered more phosphorescent, and therefore more easily visible by the increased solar activity.”47 This seems a very plausible hypothesis.

On the whole the occasional illumination of the night side of Venus by a very brilliant aurora (explanation (4) above) seems to the present writer to be the most probable explanation. Gruithuisen’s hypothesis (7) seems utterly improbable.

There is a curious apparent anomaly about the motion of Venus in the sky. Although the planet’s period of revolution round the sun is 224·7 days, it remains on the same side of the sun, as seen from the earth, for 290 days. The reason of this is that the earth is going at the same time round the sun in the same direction, though at a slower pace; and Venus must continue to appear on the same side of the sun until the excess of her daily motion above that of the earth amounts to 179°, and this at the daily rate of 37′ will be about 290 days.

Several observations have been recorded of a supposed satellite of Venus. But the existence of such a body has never been verified. In the year 1887, M. Stroobant investigated the various accounts, and came to the conclusion that in several at least of the recorded observations the object seen was certainly a star. Thus, in the observation made by Rœdickœr and Boserup on August 4, 1761, a satellite and star are recorded as having been seen near the planet. M. Stroobant finds that the supposed “satellite” was the star χ4 Orionis, and the “star” χ3 Orionis. A supposed observation of a satellite made by Horrebow on January 3, 1768, was undoubtedly θ Libræ. M. Stroobant found that the supposed motion of the “satellite” as seen by Horrebow is accurately represented by the motion of Venus itself during the time of observation. In most of the other supposed observations of a satellite a satisfactory identification has also been found. M. Stroobant finds that with a telescope of 6 inches aperture, a star of the 8th or even the 9th magnitude can be well seen when close to Venus.48

On the night of August 13, 1892, Professor Barnard, while examining Venus with the great 36-inch telescope of the Lick Observatory, saw a star of the 7th magnitude in the same field with the planet. He carefully determined the exact position of this star, and found that it is not in Argelander’s great catalogue, the Durchmusterung. Prof. Barnard finds that owing to elongation of Venus from the sun at the time of observation the star could not possibly be an intra-Mercurial planet (that is, a planet revolving round the sun inside the orbit of Mercury); but that possibly it might be a planet revolving between the orbits of Venus and Mercury. As the brightest of the minor planets – Ceres, Pallas, Juno, and Vesta – were not at the time near the position of the observed object, the observation remains unexplained. It might possibly have been a nova, or temporary star.49

Scheuten is said to have seen a supposed satellite of Venus following the planet across the sun at the end of the transit of June 6, 1761.50

Humboldt speaks of the supposed satellite of Venus as among “the astronomical myths of an uncritical age.”51

An occultation of Venus by the moon is mentioned in the Chinese Annals as having occurred on March 19, 361 A.D., and Tycho Brahé observed another on May 23, 1587.52

A close conjunction of Venus and Regulus (α Leonis) is recorded by the Arabian astronomer, Ibn Yunis, as having occurred on September 9, 885 A.D. Calculations by Hind show that the planet and star were within 2′ of arc on that night, and consequently would have appeared as a single star to the naked eye. The telescope had not then been invented.53

Seen from Venus, the maximum apparent distance between the earth and moon would vary from about 5′ to 31′.54

It is related by Arago that Buonaparte, when going to the Luxembourg in Paris, where the Directory were giving a fête in his honour, was very much surprised to find the crowd assembled in the Rue de Touracour “pay more attention to a region of the heavens situated above the palace than to his person or the brilliant staff that accompanied him. He inquired the cause and learned that these curious persons were observing with astonishment, although it was noon, a star, which they supposed to be that of the conqueror of Italy – an allusion to which the illustrious general did not seem indifferent, when he himself, with his piercing eyes, remarked the radiant body.” The “star” in question was Venus.55

CHAPTER IV

The Earth

The earth being our place of abode is, of course, to us the most important planet in the solar system. It is a curious paradox that the moon’s surface (at least the visible portion) is better known to us than the surface of the earth. Every spot on the moon’s visible surface equal in size to say Liverpool or Glasgow is well known to lunar observers, whereas there are thousands of square miles on the earth’s surface – for example, near the poles and in the centre of Australia – which are wholly unknown to the earth’s inhabitants; and are perhaps likely to remain so.

Many attempts have been made by “paradoxers” to show that the earth is a flat plane and not a sphere. But M. Ricco has found by actual experiment that the reflected image of the setting sun from a smooth sea is an elongated ellipse. This proves mathematically beyond all doubt that the surface of the sea is spherical; for the reflection from a plane surface would be necessarily circular. The theory of a “flat earth” is therefore proved to be quite untenable, and all the arguments (?) of the “earth flatteners” have now been – like the French Revolution – “blown into space.”

The pole of minimum temperature in the northern hemisphere, or “the pole of cold,” as it has been termed, is supposed to lie near Werchojansk in Siberia, where a temperature of nearly -70° has been observed.

From a series of observations made at Annapolis (U.S.A.) on the gradual disappearance of the blue of the sky after sunset, Dr. See finds that the extreme height of the earth’s atmosphere is about 130 miles. Prof. Newcomb finds that meteors first appear at a mean height of about 74 miles.56

An aurora seen in Canada on July 15, 1893, was observed from stations 110 miles apart, and from these observations the aurora was found to lie at a height of 166 miles above the earth’s surface. It was computed that if the auroral “arch maintained an equal height above the earth its ends were 1150 miles away, so that the magnificent sight was presented of an auroral belt in the sky with 2300 miles between its two extremities.”57

“Luminous clouds” are bright clouds sometimes seen at night near the end of June and beginning of July. They appear above the northern horizon over the sun’s place about midnight, and evidently lie at a great height above the earth’s surface. Observations made in Germany by Dr. Jesse, and in England by Mr. Backhouse, in the years 1885-91, show that the height of these clouds is nearly constant at about 51 miles.58 The present writer has seen these remarkable clouds on one or two occasions in County Sligo, Ireland, during the period above mentioned.

M. Montigny has shown that “the approach of violent cyclones or other storms is heralded by an increase of scintillation” (or twinkling of the stars). The effect is also very evident when such storms pass at a considerable distance. He has also made some interesting observations (especially on the star Capella), which show that, not only does scintillation increase in rainy weather, but that “it is very evident, at such times, in stars situated at an altitude at which on other occasions it would not be perceptible at all; thus confirming the remark of Humboldt’s with regard to the advent of the wet season in tropical countries.”59

In a paper on the subject of “Optical Illusions” in Popular Astronomy, February, 1906, Mr. Arthur K. Bartlett, of Batter Creek, Michigan (U.S.A.), makes the following interesting remarks: —

“The lunar halo which by many persons is regarded as a remarkable and unexplained luminosity associated with the moon, is to meteorological students neither a mysterious nor an anomalous occurrence. It has been frequently observed and for many years thoroughly understood, and at the present time admits of an easy scientific explanation. It is an atmospheric exhibition due to the refraction and dispersion of the moon’s light through very minute ice crystals floating at great elevations above the earth, and it is explained by the science of meteorology, to which it properly belongs; for it is not of cosmical origin, and in no way pertains to astronomy, as most persons suppose, except as it depends on the moon, whose light passing through the atmosphere, produces the luminous halo, which as will be seen, is simply an optical illusion, originating, not in the vicinity of the moon – two hundred and forty thousand miles away – but just above the earth’s surface, and within the aqueous envelope that surrounds it on all sides… A halo may form round the sun as well as the moon … but a halo is more frequently noticed round the moon for the reason that we are too much dazzled by the sun’s light to distinguish faint colours surrounding its disc, and to see them it is necessary to look through smoked glass, or view the sun by reflection from the surface of still water, by which its brilliancy is very much reduced.”…

“A ‘corona’ is an appearance of faintly coloured rings often seen around the sun and moon when a light fleecy cloud passes over them, and should not be mistaken for a halo, which is much larger and more complicated in its structure. These two phenomena are frequently confounded by inexperienced observers.” With these remarks the present writer fully concurs.

Mr. Bartlett adds —

“As a halo is never seen except when the sky is hazy, it indicates that moisture is accumulating in the atmosphere which will form clouds, and usually result in a storm. But the popular notion that the number of bright stars visible within the circle indicates the number of days before the storm will occur, is without any foundation whatever, and the belief is almost too absurd to be refuted. In whatever part of the sky a lunar halo is seen, one or more bright stars are always sure to be noticed inside the luminous ring, and the number visible depends entirely upon the position of the moon. Moreover, when the sky within the circle is examined with even a small telescope, hundreds of stars are visible where only one, or perhaps two or three, are perceived with the naked eye.”

It is possible to have five Sundays in February (the year must of course be a “leap year”). This occurred in the year 1880, Sunday falling on February 1, 8, 15, 22, and 29. But this will not happen again till the year 1920. No century year (such as 1900, 2000, etc.) could possibly have five Sundays in February, and the Rev. Richard Campbell, who investigated this matter, finds the following sequence of years in which five Sundays occur in February: 1604, 1632, 1660, 1688, 1728, 1756, 1784, 1824, 1852, 1880, 1920, 1948, 1976.60

In an article on “The Last Day and Year of the Century: Remarks on Time Reckoning,” in Nature, September 10, 1896, Mr. W. T. Lynn, the eminent astronomer, says, “The late Astronomer Royal, Sir George Airy, once received a letter requesting him to settle a dispute which had arisen in some local debating society, as to which would be the first day of the next century. His reply was, ‘A very little consideration will suffice to show that the first day of the twentieth century will be January 1, 1901.’ Simple as the matter seems, the fact that it is occasionally brought into question shows that there is some little difficulty connected with it. Probably, however, this is in a great measure due to the circumstance that the actual figures are changed on January 1, 1900, the day preceding being December 31, 1899. A century is a very definite word for an interval respecting which there is no possible room for mistake or difference of opinion. But the date of its ending depends upon that of its beginning. Our double system of backward and forward reckoning leads to a good deal of inconvenience. Our reckoning supposes (what we know was not the case, but as an era the date does equally well) that Christ was born at the end of B.C. 1. At the end of A.D. 1, therefore, one year had elapsed from the event, at the end of A.D. 100, one century, and at the end of 1900, nineteen centuries… It is clear, then, that the year, as we call it, is an ordinal number, and that 1900 years from the birth of Christ (reckoning as we do from B.C. 1) will not be completed until the end of December 31 in that year, the twentieth century beginning with January 1, 1901, that is (to be exact) at the previous midnight, when the day commences by civil reckoning.” With these remarks of Mr. Lynn I fully concur, and, so far as I know, all astronomers agree with him. As the discussion will probably again arise at the end of the twentieth century, I would like to put on record here what the scientific opinion was at the close of the nineteenth century.

Prof. E. Rutherford, the well-known authority on radium, suggests that possibly radium is a source of heat from within the earth. Traces of radium have been detected in many rocks and soils, and even in sea water. Calculation shows that the total amount distributed through the earth’s crust is enormously large, although relatively small “compared with the annual output of coal for the world.” The amount of radium necessary to compensate for the present loss of heat from the earth “corresponds to only five parts in one hundred million millions per unit mass,” and the “observations of Elster and Gertel show that the radio-activity observed in soils corresponds to the presence of about this proportion of radium.”61

The earth has 12 different motions. These are as follows: —

1. Rotation on its axis, having a period of 24 hours.

2. Revolution round the sun; period 365¼ days.

3. Precession; period of about 25,765 years.

4. Semi-lunar gravitation; period 28 days.

5. Nutation; period 18½ years.

6. Variation in obliquity of the ecliptic; about 47″ in 100 years.

7. Variation of eccentricity of orbit.

8. Change of line of apsides; period about 21,000 years.

9. Planetary perturbations.

10. Change of centre of gravity of whole solar system.

11. General motion of solar system in space.

12. Variation of latitude with several degrees of periodicity.62

“An amusing story has been told which affords a good illustration of the ignorance and popular notions regarding the tides prevailing even among persons of average intelligence. ‘Tell me,’ said a man to an eminent living English astronomer not long ago, ‘is it still considered probable that the tides are caused by the moon?’ The man of science replied that to the best of his belief it was, and then asked in turn whether the inquirer had any serious reason for questioning the relationship. ‘Well, I don’t know,’ was the answer; ‘sometimes when there is no moon there seems to be a tide all the same.’”!63

With reference to the force of gravitation, on the earth and other bodies in the universe, Mr. William B. Taylor has well said, “With each revolving year new demonstrations of its absolute precision and of its universal domination serves only to fill the mind with added wonder and with added confidence in the stability and the supremacy of the power in which has been found no variableness neither shadow of turning, but which – the same yesterday, to-day and for ever —

“Lives through all life, extends through all extent,Spreads undivided, operates unspent.”64

With reference to the habitability of other planets, Tennyson has beautifully said —

“Venus near her! smiling downwards at this earthlier earth of ours,Closer on the sun, perhaps a world of never fading flowers.Hesper, whom the poets call’d the Bringer home of all good things;All good things may move in Hesper; perfect people, perfect kings.Hesper – Venus – were we native to that splendour, or in Mars,We should see the globe we groan in fairest of their evening stars.Could we dream of war and carnage, craft and madness, lust and spite,Roaring London, raving Paris, in that spot of peaceful light?Might we not in glancing heavenward on a star so silver fair,Yearn and clasp the hands, and murmur, ‘Would to God that we were there!’”

The ancient Greek writer, Diogenes Laertius, states that Anaximander (610-547 B.C.) believed that the earth was a sphere. The Greek words are: μίσην τε τὴν γήν κεῖσθαι, κέντρυ τάξιν ἐπεχοῦσαν οὐσαν σφαιροειδῆ.65

With reference to the Aurora Borealis, the exact nature of which is not accurately known, “a good story used to be told some years ago of a candidate who, undergoing the torture of a vivâ voce examination, was unable to reply satisfactorily to any of the questions asked. ‘Come, sir,’ said the examiner, with the air of a man asking the simplest question, ‘explain to me the cause of the aurora borealis.’ ‘Sir,’ said the unhappy aspirant for physical honours, ‘I could have explained it perfectly yesterday, but nervousness has, I think, made me lose my memory.’ ‘This is very unfortunate,’ said the examiner; ‘you are the only man who could have explained this mystery, and you have forgotten it.’”66 This was written in the year 1899, and probably the phenomenon of the aurora remains nearly as great a mystery to-day. In 1839, MM. Bravais and Lottin made observations on the aurora in Norway in about N. latitude 70°. Bravais found the height to be between 62 and 93 miles above the earth’s surface.