• Разгрузка колонны труб на плашки и удержанием колонны плашками от выброса (при возрастании давления в скважине);
• Спуск м подъем части колонны при загерметизированном устье скважины в случае установки двух плашечных превенторов (метод шлюзования);
• Восстановление циркуляции промывочной жидкости с противодавлением на пласт;
• Быстрое снижение давления в скважине;
• Закачку раствора обратной циркуляцией (через затрубное пространство);
Устройство плашечного превентора показано на рис. 2. 19.[9]
Для работы превентора существует три вида плашек:
1. Трубные – для герметизации скважины при наличие в ней колонны труб;
2. Срезные – для геметизации как при наличие труб, так и при их отсутствии;
3. Глухие – для герметизации скважины при отсутствии труб.
Открытие и закрытие плашек осуществляется посредством гидравлической жидкости подаваемой под давлением в полости цилиндров. Также предусмотрена возможность закрытия плашек вручную, с помощью специального штурвала.
Превентор универсальный гидравлический (ПУГ) Как следует из названия, является универсальным герметизирующим устройством. Устанавливается на устье скважины, как правило поверх плашечного превентора, к которому крепится посредством резьбовых шпилек. Запирание и отпирание скважины производится только при помощи гидравлики. Превентор универсальный гидравлический является дополнительным средством герметизации скважины рис. 2.17.
Рис. 2.17. Устройство универсального превентора
Как правило он рассчитан на половину давления, выдерживаемого плашечным превентором.
Преветор универсальный гидравлический используется для:
• Герметизации устья при наличии бурильного инструмента в скважине, на любой части бурильной колонны (гладкая часть, замковые соединения) УБТ, квадрат и др.), обсадных или насосно-компрессорных труб;
• Герметизации устья при отсутствии бурильного инструмента в скважине расхаживания инструмента;
• Протаскивания инструмента с замковыми соединениями (при наличии на них фасок под углом 18°) на небольшой скорости (при контролируемом давлении в камере закрытия);
• Быстрого снижения давления в скважине.
Причем не требует в отличие от плашечного, подбора плашек, а может герметизировать скважину с трубами различного размера в определенном диапазоне.
1-верхний фланец;
2-верхняя секция корпуса;
3-Уплотнительный элемент корпуса;
4-Переходное кольцо;
5-Поршень;
6-Нижняя секция корпуса;
7-Нижний фланец.
Принцип работы ПУГа в следующем. Через специальный канал к в нижней секции корпуса (на рисунке не показан) под поршень поступает гидравлическая жидкость под давлением, поршень двигается вверх и давит на резиновый элемент, резиновый элемент скользит направляющими полозьями (армированными стальными пластинами) по внутренней стенке верхней секции корпуса. Таким образом резиновый элемент сжимается в верхней части и герметизирует свою внутреннюю полость. [9]
В настоящее время для монтажа ПВО, согласно ГОСТ 13862 90, существует 10 схем. [71] Монтаж противовыбросового оборудования должен производится в соответствии со схемой обвязки устья скважины, которая определяется из геолого-технических условий; технической документацией (технический паспорт, технические условия или инструкция по эксплуатации); соответствующих правил; схем и ГОСТов при освоении, текущем и капитальном ремонте и в соответствии с положениями настоящей инструкции. Выбранная схема должна быть указана в плане работ на ремонт (освоение) скважины. В процессе работ допускается переход от одной схемы обвязки устья скважины противовыбросовым оборудованием к другой. Все изменения должны указываться в плане работ. К работе по монтажу и эксплуатации допускаются работники, прошедшие подготовку по курсу “Контроль скважины. Управление скважиной при ГНВП”.
Схема 2.1. и 2.2. – с механическим (ручным) приводом; – с гидравлическим приводом. В ОП для ремонта – привод механический или гидравлический, для бурения – гидравлический.
Рис. 2.18. Схема 1 согласно ГОСТ 13862 90
Рис. 2.19. Схема 2 согласно ГОСТ 13862 90
Рис. 2.20. Схема 3 согласно ГОСТ 13862 90
Рис. 2.21. Схема 4 согласно ГОСТ 13862 90
Рис. 2.22. Схема 5 согласно ГОСТ 13862 90
Рис. 2.23. Схема 6 согласно ГОСТ 13862 90
Рис. 2.24. Схема 7 согласно ГОСТ 13862 90
Рис. 2.24. Схема 8 согласно ГОСТ 13862 90
Рис. 2.25. Схема 9 согласно ГОСТ 13862 90
Рис. 2.26. Схема 2.1.0 согласно ГОСТ 13862 90
Схемы № 1. и № 2. используются, как правило, при ремонте скважин, так как имеют механический (ручной) привод плашечных превенторов и задвижек. Схемы № 3 и № 4 используются как при капитальном ремонте, так и при строительстве скважин и имеют дистанционное гидравлическое управление превенторами и устьевыми задвижками. Схемы с № 3 по № 10 имеют дистанционное гидравлическое управление превенторами и устьевыми задвижками. Используются, как правило, только при строительстве скважин. В случае отказа дистанционного гидравлического управления превентора и гидрозадвижки должны иметь ручное управление. Согласно требованиям Государственного общероссийского стандарта ГОСТ 13862–90 противовыбросовое оборудование имеет следующее условное обозначение: Оборудование ОП 3–230/80×35 К2 ГОСТ 13862–90 расшифровывается следующим образом:
• ОП 3 – оборудование противовыбросовое по схеме № 3;
• 230 – условный проход превенторного блока, мм;
• 80 – условный проход манифольда, мм;
• 35 – рабочее давление, МПа (350 кгс/см2);
• К2 – для скважинной среды с содержанием СО2 и Н2 до 6 %.
• В зависимости от содержания углекислого газа (СО2) и сероводорода (Н2S) в эксплуатируемой среде (в промывочной жидкости) оборудование противовыбросовое выпускается в следующем коррозионностойком исполнении:
• К1 – для сред с объёмным содержанием СО2 до 6 %;
• К2 – для сред с объёмным содержанием СО2 и Н2S до 6 % каждого;
К3 – для сред с объёмным содержанием СО2 и Н2S до 25 %. [71]
§ 8. Талевые канаты
Важным элементом, существенно влияющим на безопасность работ, является талевая система, включающая в себя талевый канат. Поэтому особое внимание нужно уделять состоянию талевого каната, его эксплуатации. Стальные канаты отличаются друг от друга: используемыми марками стали и значениями временного сопротивления разрыву, видами покрытия, конструкциями, типом свивки проволок и прядей, рядом свивки прядей, видом свивки каната, направлением свивки. [33]
А – канаты однослойные тросовой конструкции из круглых прядейа) С одним органическим сердечником ЛК-О 6*19 = 114. ЛК-О тип свивки линейного касания с одинаковым типом проволок в каждом слое и отличными диаметрами проволок по слоям. 19-число проволок в пряди; 114 – общее число проволок в канате; 6-число прядей в канате.
б) С одним металлическим сердечником тросовой свивки ЛК-3 – 6*25 = 150; ЛК-3 – тип свивки (линейное касание с запоминающими проволоками). 6 – число прядей; 25 – число проволок в пряди. Сердечник 7*7 = 49 проволок.
Б – канаты многослойные тросовой конструкции с одним органическим сердечникомТК 18*19 = 342; ТК – тип свивки (точечное касание проволоки между слоями проволок в пряди). 18 – число прядей в канате; 19 – число проволок в пряди.
Талевые канаты должны поставляться (при весе более 700 кг) на деревянных или металлических барабанах. При весе 3000 кг деревянные барабаны должны иметь центральные металлические втулки. Диаметр бочки барабана должен быть не менее 15-ти кратного диаметра каната.
Каждый талевый канат должен сопровождаться сертификатом завода изготовителя.
При бурении на нефть и газ обычно нагрузка на канат делается с четырехкратным запасом прочности. Новые канаты, с целью увеличения сроков службы необходимо эксплуатировать с нагрузкой меньше максимально допустимой. После обтяжки, можно доводить нагрузку до максимальной.
Основные принципы, которыми нужно руководствоваться при выборе и эксплуатации талевого каната:
1. Диаметр каната и число струн, в оснастке выбирают с учетом максимально возможной рабочей нагрузки таким образом, чтобы обеспечить запас прочности не менее 4-х;
2. Число струи в оснастке определяют величинами расчетной нагрузки и необходимой скорости подъема инструмента;
3. Сорт стали для канатов выбирают с учетом обеспечения гибкости, износоустойчивости и наименьшей стоимости;
4. Тип свивки каната выбирают из соображений обеспечения износоустойчивости, гибкости и прочности;
5. При сматывании с катушки избегать перегибов;
6. Ходовой конец каната должен быть надежно закреплен и должен иметь не менее трех витков на барабане, при нижнем положении крюкоблока;
7. Мертвый конец каната крепить на вращающемся механизме.
8. Канат в талевой системе необходимо периодически перепускать.
Количество метров, которое нужно перепустить и вырубить определяется работой, измеряемой в тонно-километрах. Определяется по специальной методике, изложенной ниже.
Отработка талевых канатовПри эксплуатации талевых канатов их износ между II и III роликами талевого блока – наибольший, вследствие более частого огибания роликов под нагрузкой во время спуско подъемных операций. Перетяжка талевого каната увеличивает срок его службы. Это достигается сдвиганием участка каната из зоны наибольших нагрузок в менее нагруженную зону. Канат в этом случае изнашивается по всей длине равномерно. На практике применяется несколько вариантов перетяжки, предложенных институтом «Гипронефтемаш» (табл. 4) [33]
Таблица 4. Показатели работы талевого каната
Наработку талевого каната А (т*км) за рейс по графику Рис. 2.27. Среднюю массу 1 м инструмента определяют по показанию индикатора веса при установившейся скорости подъма первой свечи или формуле:
gср = (Gтб + 1,15*Gбт)/ήLбт (2.2)
где:
Gтб – масса талевого блока, элеватора, крюкоблока, кг;
Gбт – масса бурильной компоновки, кг;
ή – кпд талевой системы (0,9–0,93);
Рис. 2.27. График наработки т. каната за 1 рейс
На графике рис. 31 из точки Lскв = Lбт проводится горизонтальная прямая до пересечения с соответствующей кривой gср из точки пересечения перпендикулярно проводится линия на ось работы, определяется работа за рейс. При спуске обсадных колонн одной секцией
Gср = 0,5*(Gтб + Gбт + Gобс)/ ή*Lскв (2.3.)
При спуске обсадных колонн секциями на бурильных трубах наработку талевого каната расчитывают отдельно соответственно для спуска секции и подъема бурильных труб после их отворота.
g ср. сп. = 0,5*(Gтб + Gбт + Gобс)/ ή*Lскв (2.4.)
g ср. п = 0,5*(Gтб + Gбт + )/ ή*Lбт. (2.5.)
Учет наработки талевого каната ведется с нарастающим итогом по каждому рейсу. При соблюдении требований по эксплуатации талевого каната наработка до полного износа бухты длинной 1500 м достигает 65000–70000 т*км
Характерные дефекты талевого канатаШтопор – самопроизвольное кручение каната по весом. Рис 2.28
Рис. 2.28. Штопор
Фонарь – корзинообразная деформация. Отслоение наружных прядей или проволок фонарение наблюдается в многослойных канатах и свидетельствует о появлении сжимающих усилий в наружном слое и перегрузке сердечника. Расслабление наружных элементов часто накапливается вблизи анкерных устройств. Фонарь может возникать еще и из-за раскручивания каната при спешной подготовке к эксплуатации. При наличии фонаря, канат рекомендуется забраковать (рис. 2.29).
Рис. 2.29. Фонарь
Петлеобразование – выдавливание проволок прядей (рис. 2.34). Выпучивание сердечников прядей происходит в результате неустойчивости против кручения при ударных нагрузках. При существенном нарушении структуры каната по причине петлеобразования проволок канат рекомендуется забраковать.
Рис. 2.30. Выдавливание проволок прядей: а – в одной пряди, б – в нескольких прядях
Разрыхление. Разрыхление наружного слоя проволок или прядей, при котором они становятся легко подвижны, приводит к перегрузке остальных проволок. Если разрыхление произошло вследствие износа или коррозии проволок, то канат рекомендуется заменить. В других случаях требуется повышенное внимание к дальнейшей эксплуатации каната (рис. 2. 31).
Рис. 2.31. Разрыхление
Местное утолщение – местное утолщение каната наблюдается при наличии утолщения сердечника, что может служить причиной ускоренного износа прядей. При сильно выраженном местном утолщении каната его рекомендуется отбраковать (рис. 2.32).
Рис. 2.32. Утолщение
Затяжки – затяжка одной или нескольких прядей может происходить при малом диаметре сердечника, его износе или разрушении. Особенно тщательно следует проверять участки каната, прилегающие к анкерным устройствам, где затяжка бывает трудно различима. Нарушение структуры каната в виде затяжки приводит к резкому перераспределению нагрузок между его элементами, поэтому при достаточно выраженной затяжке канат следует заменить (рис. 2.33).
Рис. 2.33. Уменьшение диаметра
Раздавливание – Раздавливание каната – это следствие нарушения правил эксплуатации. Местное раздавливание приводит к ускоренному износу проволок каната и требуется повышенного внимания к канату при его дальнейшей эксплуатации (рис. 2.34).
Рис. 2.34. Раздавливание
Колышка – перекручивание каната. Колышка обычно образуется при затяжке петли в результате грубых нарушения правил подготовки каната к работе и является безусловным основанием для отбраковки (рис. 2.35).
Рис. 2.35. Перекручивание каната
Излом. Канат забраковавывается и в случае его резкого излома в результате перегиба на элементах конструкции или других посторонних воздействий на него (рис. 2.36).
Рис. 2.36. Излом
Необходимо регулярно тщательно проверять все участки стального каната на предмет возможного снижения рабочих характеристик. Проверка начинается с тщательной проверки критических точек каната. Критическими точками, в зависимости от применения, являются те точки, где канат подвергается максимальным внутренним напряжениям или наружным воздействиям. Износ каната наиболее вероятен на следующих критических участках, поэтому их следует тщательно проверять. [33]
Барабаны. При правильной намотке каната в точках пересечения, схода и начала слоя происходит нормальный износ. Обращать внимание на следы трения по бокам каната; другими словами, на участки каната, которые трутся о нижние витки каната. Может происходить раздавливание верхней и боковых сторон каната. При сильном износе следует вывести канат из эксплуатации. Трение и раздавливание обычно возникают дважды при каждом обороте барабана.
Проверка барабанов также очень важна. Проверять барабан на наличие признаков износа, которые могут привести к повреждению стального каната. Все барабаны должны быть гладкими, без неровностей. Проверять минимальное число неподвижных витков, которые остаются на барабане, характеристики намотки каната и состояние фланцев.
Блоки. Очень важно проверять стальные канаты, проходящие по блокам системы, на отсутствие разрывов проволоки. Канавки имеют тенденцию к износу с уменьшением ширины, особенно при высоких нагрузках. С помощью калибра проверьте размеры и гладкость канавок всех блоков. Слишком узкие или тесные канавки могут привести к защемлению и увеличению истирания, в то время как слишком широкие канавки могут привести к расплющиванию каната – и то и другое ведет к сокращению срока службы каната. Следует также проверять на наличие неровностей, сломанных или выщербленных фланцев, трещин в ступицах и спицах, признаков контакта каната с защитными пластинами, подшипниками и валом блока, нарушение круглой формы и соосности с другими блоками – все эти признаки являются основаниями для замены.
Крепление концов. Движение каната у закрепленных концов ограничено и подвержено усталостным напряжениям, возникающим при гашении вибраций каната. Следует проверять эти участки с шилом, чтобы искать разрывы проволоки, в случае обнаружения более одного разрыва следует заменить канат. Следует также проверить сам узел крепления.
Начальные точки. Участки каната, контактирующие с блоками или барабанами при приложении начальной нагрузки.
Воздействие тепла. Если канат входит в контакт с электрической дугой, следует немедленно заменить весь канат. Несмотря на то, что повреждение может быть незаметным, электрическая дуга может повлиять на характеристики каната, поэтому канат следует заменить.
Точки интенсивного износа. Проверять канат на наличие блестящих мест, где он подвергается интенсивному трению и истиранию.
Когда следует заменить талевый канат по причине интенсивного износа.
Стальные канаты, находящиеся в неподвижном состоянии, такие как оттяжки, канаты для аварийного спуска и подвесные канаты, должны заменяться в любом из нижеперечисленных случаев:
1. При наличии трех разрывов проволоки в пределах одного витка.
2. При наличии более чем одного разрыва проволоки у концевых соединений.
3. Наличие разрывов проволоки в канавке между прядями каната.
Другие причины замены канатовРазрывы проволоки являются лишь одним из видов износа стальных канатов. Другие причины вывода стальных канатов из эксплуатации перечислены ниже:
a. Точечная коррозия проволоки.
b. Коррозия проволоки на концевых соединениях.
c. Концевые соединения, поврежденные коррозией, растрескавшиеся, изогнутые или неправильно установленные.
d. Признаки перекручивания, раздавливания, разрезов, корзинообразных деформаций или разрывов сердечника.
e. Износ, превышающий одну треть исходного диаметра проволоки.
f. Сильное уменьшение диаметра каната.
g. Признаки термического повреждения.
h. Существенное увеличение длины витков. [33]
Глава 3. Конструкция скважины
§ 9. Понятие о конструкции скважины
Под конструкцией скважины понимают совокупность данных о количестве и глубинах спуска обсадных колонн, диаметрах обсадных колонн, диаметрах ствола скважины для каждой из колонн и интервалов цементирования (глубинах верхней и нижней границ каждого интервала). [89] Правильность выбора конструкции определяет успех проводки скважины. Нарушение проектной конструкции скважины (не допуск колонн, изменение диаметра колонн), может привести к непоправимым последствиям, либо к существенному удорожанию стоимости скважины, поэтому при осуществлении супервайзинга необходимо принимать все меры к недопущению отклонений в конструкции скважин. Кондуктор и эксплуатационная колонна в проектной конструкции обязательны, независимо от горно-геологических условий строительства скважины. В зависимости от назначения скважины, конструкции забоя и условий эксплуатации функции эксплуатационной колонны может частично выполнять ранее спущенная обсадная колонна (кроме кондуктора). Башмак последней промежуточной колонны, перекрывающей породы, склонные к пластическим деформациям, следует устанавливать ниже их подошвы.
Элементы конструкции скважиныНаправление – это первая труба или колонна труб, служащая для предотвращения размыва пород, залегающих близ дневной поверхности, разобщения ствола скважины, сооружаемой в акватории водного бассейна, от окружающих вод и для соединения устья с очистной системой буровой установки.
Кондуктор – это колонна труб, спускаемая в скважину после направления и служащая для укрепления стенок последней в недостаточно устойчивых породах, и для перекрытия зон осложнений, приуроченных к сравнительно неглубоко залегающим горизонтам, а также для изоляции горизонтов, содержащих артезианские и целебные воды.
Эксплуатационная колонна – это самая внутренняя колонна. Она служит не только для укрепления стенок скважины и изоляции соответствующих горизонтов, насыщенных нефтью, газом или водой, но также каналом для транспортировки, добываемой из продуктивной толщи нефти или газа, или закачиваемой в последнюю жидкости (газа).
Промежуточные или технические колонны – это все колонны труб, находящиеся между кондуктором и эксплуатационной колонной. Их спускают для перекрытия сравнительно глубоко залегающих неустойчивых пород, либо для изоляции продуктивных горизонтов, расположенных намного выше проектной глубины скважины, перекрытия зон несовместимого бурения, либо для изоляции пород оказывающих сильное агрессивное воздействие на промывочную жидкость и других целей. Обычно верхний конец колонны труб устанавливают на устье скважины.
Хвостовик или потайная колонна – это случай, когда по геолого-техническим условиям и соображений экономичности, нет необходимости располагать верхний конец колонны на устье, верхний конец колонны располагается в скважине на значительной глубине от устья, но перекрывает башмак предыдущей колонны.
Фильтр, это та часть колонны, которая составлена из труб со специально просверленными или перфорированными отверстиями (или профрезированными, или перфорированными).
Графическое изображение конструкции скважин показано на Рис3.1.[88]
Графическое изображение конструкции скважиныа – со сплошными колоннами;
б – с хвостовиком;
в – с комбинированной эксплуатационной колонной и хвостовиком.
Направление на графическом изображении, как правило, не показывают.
Рис. 3.1. Графическое изображение конструкции скважины
В не обсаженном стволе скважины цементированию подлежат:
• Продуктивные горизонты, кроме предусмотренных к опробованию и эксплуатации открытым стволом или с нецементируемым фильтром;
• Продуктивные горизонты, не предусмотренные к опробованию или эксплуатации, и горизонты с непромышленными запасами нефти и газа;
• Истощенные горизонты;
• Проницаемые горизонты, насыщенные пресной водой, а также всеми типами минерализованных вод;
• Горизонты вторичных (техногенных) залежей нефти и газа;
• Интервалы, представленные породами, склонными к пластическому течению и выпучиванию;
• Толща многолетнемерзлых пород;
• Горизонты, породы которых или продукты их насыщения способны вызывать ускоренную коррозию обсадных труб.
Минимально необходимая высота подъема тампонажного раствора над флюидосодержащими горизонтами, а также над кровлей подземных хранилищ газа и нефти, над устройством ступенчатого цементирования (стыком секций) верхней ступени (секции) обсадных колонн должна составлять не менее 150–300 м для нефтяных и 500 м для газовых скважин.). [86]