Книга Познание мира. Механизмы и пределы - читать онлайн бесплатно, автор Александр Васильевич Древаль. Cтраница 2
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
Познание мира. Механизмы и пределы
Познание мира. Механизмы и пределы
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

Познание мира. Механизмы и пределы

Приведем пример. Допустим, мужчина увидел фотографию очень привлекательной женщины и в ответ на этот образ у него стимулировалась секреция половых гормонов. При этом можно представить, что энергия, затраченная в организме на стимуляцию нейронами головного мозга секреции половых гормонов вполне равна энергии, полученной зрительным анализатором при поступлении световых волн от фотографии к сетчатке. А может даже и меньше. Нейроны, которые произвели стимулирующие сигналы, использовали для этого синтезированную ранее энергию из глюкозы, которую доставила к ним кровь. Следовательно, поступившая мужчине (НБИ) энергия в процессе информационного взаимодействия с фотографией (АБИ), хотя и равна той, которую была затрачена организмом на реализацию модели стимуляции гормонов, но это ранее накопленная энергия.

В указанном примере имеется возможность отличить информационное взаимодействие от физического при нулевой важности информации только потому, что у нас есть представление о модели поведения НБИ. В противном случае, отличить физическое взаимодействие от информационного невозможно.

Итак, информацию можно обнаружить лишь тогда, когда у НБИ активизируется модель поведения в ответ на энергию (вещество), поступающую от АБИ. Исходя из этого положения, приведем еще пример информационного взаимодействия между неживыми объектами. Рассмотрим систему из двух компьютеров, первый из которых является АБИ, а второй НБИ, то есть от первого компьютера энергия (например, в виде электрических импульсов) поступает ко второму компьютеру, что запускает (активирует) в нем какую-то компьютерную программу (модель поведения, по нашему определению). Поскольку в НБИ-компьютере имеется программа (матмодель) его поведения в ответ на поступающие электрические импульсы от АБИ-компьютера (например, если НБИ-компьютер это робот на колесиках и, допустим, он двигается по комнате определенным образом в зависимости от последовательности электрических импульсов, поступающих от АБИ-компьютера), тогда между этими компьютерами устанавливается информационное взаимодействие, так как оно отвечает всем вышеупомянутым критериям такого взаимодействия. Во-первых, важность информации здесь больше нуля, так как энергия, полученная НБИ-компьютером от АБИ- компьютера, существенно меньше, чем затраченная на передвижение, активированное этими электрическими сигналами. И это расхождение связано с тем, что НБИ-компьютер (робот) реализует активированное АБИ-компьютером поведение (передвижение в пространстве) за счет собственных энергетических ресурсов (например, автономного источника питания робота), а не поступивших от АБИ-компьютера сигналов для модели поведения. Но если даже АБИ-компьютер и будет снабжать НБИ-компьютер энергией для передвижения вместе с сигналами, причем ровно столько, сколько нужно для осуществления этого передвижения, то несмотря на то, что важность информации в этом случае окажется равной нулю, все равно взаимодействие останется информационным.

Информационность взаимодействия сохраняется потому, что характер перемещения НБИ- компьютера по комнате определяется его внутренней моделью управления колесами, а не поступающей энергией сигналов, которые лишь активируют эту внутреннюю модель, как это происходило и в примере с выключателем.

1.4. Наблюдатель информационного взаимодействия

Без наблюдателя нельзя обнаружить информационное взаимодействие.

В отсутствии наблюдателя нет возможности оценить процесс взаимодействия АБИ и НБИ, так как оценка такого взаимодействия предполагает взгляд на них со стороны. При этом наблюдателю недостаточно просто иметь возможность созерцать взаимодействие АБИ и НБИ, а он должен быть осведомлен и о модели поведения НБИ. Иначе его возможности установить наличие информационного взаимодействия будут резко ограничены.

При отсутствии представлений о модели поведения НБИ, наблюдатель не сможет определить, например, как связана энергия, поступившая от АБИ к НБИ с энерготратами, обусловленными деятельностью модели. Если о модели информационного поведения НБИ наблюдатель не осведомлен, тогда его компетенция ограничена физикой взаимодействия АБИ и НБИ, то есть физическими законами обмена энергией и веществом между ними.

В случае информационного взаимодействия двух компьютеров, когда наблюдатель является и автором модели поведения НБИ-компьютера, наблюдатель оказывается полностью осведомленным о модели поведения НБИ (робота) (рис. 1.6). В этом случае можно очень точно измерить все характеристики информационного взаимодействия компьютеров.


Рис. 1.6. Четыре возможных наблюдателя информационного процесса, но логически оправданным должно быть введение пятого типа наблюдателя – «не человек наблюдатель»


Человек может одновременно выступать при взаимодействии с АБИ и как НБИ такого взаимодействия, и, в то же время, как наблюдатель. В этом случае он осведомлен, по крайней мере, отчасти, о своей модели, которую вызывает АБИ и потому можно назвать такого наблюдателя как внутренне и частично (или полностью, при определенных обстоятельствах) осведомленным наблюдателем. Следовательно, в зависимости от полноты осведомленности, такой наблюдатель может частично или полностью рассчитать параметры информационного взаимодействия.

Человек может быть и сторонним наблюдателем взаимодействия другого человека (НБИ) с АБИ. В этом случае внешний человек-наблюдатель может, потенциально, получить полную или частичную информацию от НБИ-человека о модели, которую вызвал АБИ. Полнота осведомленности в этом случае зависит от сложности модели и качества информационного взаимодействия НБИ и наблюдателя (например, наблюдатель может обладать менее совершенными информационными моделями, чем НБИ). Примером простых моделей являются математические формулы, с которыми НБИ и наблюдатель оперируют идентичным образом. Следовательно, в описанном случае, когда НБИ является человек, то человек-наблюдатель может рассматриваться как внешне и частично (или полностью, при определенных обстоятельствах) осведомленным наблюдателем, а значит и в этом случае возможна оценка наблюдателем, с той или иной долей точности, параметров информационного взаимодействия или, фактически, информации, содержащейся у НБИ.

Приостановим пока дальнейшее описание нашей теории информации, поскольку представленных выше сведений о ней достаточно, чтобы начать с ее помощью анализировать процессы познания окружающего мира. Приведенные ниже примеры применения новой теории информации помогут также лучше понять основные ее принципы. Более детальную проработку этой теории мы отложим на последующие главы.

Темы для размышлений:

1. В конце раздела 1.2. было указано: информационное взаимодействие АБИ и НБИ, является односторонним – АБИ вызывает в НБИ информационные процессы (активизацию моделей поведения НБИ), в то время как сам АБИ не является элементом этих внутренних для НБИ информационных процессов, так как не есть материальный элемент модели НБИ. В противном случае, исчезает информационное взаимодействие АБИ и НБИ, как таковое (как в примере на рис. 1.3).

Вопросы: Почему исчезает информационное взаимодействие, когда АБИ становится частью модели поведения НБИ? В качестве примера можно рассмотреть более сложный объект – организм человека и его реакцию, например, на падение сахара крови, что вызывает чувство голода. В этом случае и АБИ (низкий сахар) является одним из параметров организма человека, а организм, по нашему определению, казалось бы, является и НБИ. Не противоречит ли этот пример указанному определению информационного взаимодействия? Я, лично, думаю, что нет. А вы, уважаемый читатель?

2. В разделе 1.3 приведен пример с двумя компьютерами, один из которых (АБИ-компьютер) «управляет» перемещением другого компьютера (НБИ-компьютер).

Проблема. Разместим АБИ-компьютер на НБИ-компьютере, так, чтобы они вместе перемещались на одной платформе. Пусть мы не знаем, по какими правилам НБИ-компьютер перемещается в зависимости от импульсов, поступающих от АБИ-компьютера. И пусть эти правила не имеют никакого отношения к преодолению препятствий платформой и вообще никак не связаны с окружением, в котором находится платформа с двумя компьютерами. Более того, два эти компьютера на платформе, размещены в непроницаемом для нас корпусе и мы не имеем никакого представления о его содержании.

Вопросы. Возможно ли, наблюдая за перемещением описанной «коробки» на колесах, доказать, что имеет место информационном взаимодействии чего-то с чем-то? Если при заданных условиях задачи невозможно получить однозначного ответа на поставленный вопрос (что, скорее всего, именно так), то как нужно изменить эти условия, чтобы ответ оказался однозначным?

3. На рис. 1.6 представлены четыре возможных наблюдателя информационного процесса, но логически оправданным должно быть введение пятого типа наблюдателя – «не человек наблюдатель». Как известно, сложные бытовые приборы оснащены устройствами, контролирующими их работу. Например, стиральная машина самостоятельно меняет режимы работы на разных стадиях стирки. То есть создается впечатление, что в машину встроен «неживой» наблюдатель за ее деятельностью.

Вопросы. Можно ли устройства, контролирующие работу сложного прибора, считать наблюдателями информационного взаимодействия. Или, более общий вопрос – могут ли существовать в природе наблюдатели информационного процесса, кроме человека? Или, с другой стороны, какими качествами должен обладать некоторый объект, чтобы его можно было отнести к категории наблюдателя информационного процесса? Заодно, постарайтесь представить, кто на рис. 1.6. является «не человеком НБИ»? На последний вопрос можно получить ответ после прочтения остальных глав этой книги.

Раздел 2

Простые механизмы познания и теория информации

2.1. Открытие законов природы

Покажем, как наша теория информации может использоваться для описания механизмов познания человеком окружающего мира. Для наглядности, продемонстрируем это на «законе земного притяжения», который мог бы сформулировать трезво мыслящий человек на любой стадии развития общества. Такой человек постоянно наблюдает, что брошенные им предметы всегда падают обратно на землю. Следовательно, «закон земного притяжения» мог выглядеть с его точки зрения так: поднятый с земли и затем подброшенный предмет притягивается землей. Вооруженный этим «законом земного притяжения» человек не опасается, например, что брошенный бумеранг, улетит в заоблачную даль и придется, в связи с этим, изготавливать новый.

Для простоты дальнейшего изложения, будем называть модели, которые находятся у человека как НБИ познавательными или информационными. Рассмотрим, как, согласно нашей теории, используются познавательные модели банка информации для постижения «закона земного притяжения». Опишем для этого, максимально упрощенно, элементы познавательной модели о поведении камня в окружающей среде, которую использует человек, как НБИ, при изучении свойств камня (АБИ), что приводит, в конечном счете, к формулированию «закона земного притяжения». Итак, для формулирования «закона земного притяжения» достаточно извлечь из банка информации модель, состоящую из следующих элементов (рис. 2.1): трехмерное пространство, а также земля, рука и камень в этом пространстве. При этом камень может находиться в одном из трех конечных положений – на земле, в руке или над землей. Кроме того, в модели предполагается, что камень можно свободно перемещать в трехмерном пространстве. Такая познавательная модель может использоваться для описания, по крайней мере, трех очевидных явлений (рис. 2.1): 1) камень падает на землю; 2) камень устремляется вверх и исчезает; 3) камень остается в руке; 4) камень зависает между землей и рукой. Для того чтобы из возможных явлений выбрать правильное, человек должен провести эксперимент с камнем: выронить камень из руки, например. В результате многократных повторений такого эксперимента с камнем, человек наблюдает только реализацию первого из потенциально возможных явлений – падение камня на землю. В итоге, он формулирует закон земного притяжения – поднятый с земли камень всегда падает обратно на землю.

Познавательная модель с 4 вариантами возможного поведения камня должна присутствовать в мозгу человека (возможно, явно им не осознаваемо, а на уровне подсознания) до начала эксперимента, иначе ему не из чего конструировать «закон земного притяжения».

Ведь восприятие движения камня, в том числе и по направлению к земле, осуществляется в рамках большой познавательной модели окружающего мира, которая формируется у человека в процессе взаимодействия (тоже информационного и по нашей схеме) организма и окружающей среды, с момента зарождения. И если не сформировано восприятие (модель) движения камня от руки к земле, то такое движение для человека практически отсутствует. В этом случае человек бы наблюдал, вероятно, исчезновение камня, то есть пятый вариант поведения камня и сделал бы вывод, что брошенный камень исчезает неведомо куда.


Рис. 2.1. Открытие «закона земного притяжения». Информационная модель состоит из элементов: «камень», «земля» и «рука», помещенных в «трехмерное пространство». Камень может находиться «над» землей или «на» земле или «в» руке. Модель потенциально может описывать 4 явления, например, камень (1) падает на землю, (2) устремляется вверх, (3) остается в руке или (4) зависает между рукой и землей


2.2. Мера важности информации в законах природы

Итак, возвратимся к рассмотренной в разделе 1 оценке важности информации. В примере с земным притяжением, световая энергия, поступающая к зрительному анализатору от камня, запускает познавательные механизмы, которые, в конечном счете, выбирают из банка информации познавательную модель «земного притяжения», отражающую первый из четырех возможных вариантов «закона земного притяжения».

Такая модель, по сути, и оказывается носителем информации для человека о земном притяжении. Как подсчитать, сколько информации «получено» в этом эксперименте? Можно, например, допустить, что объем информации в данном случае выражается числом состояний, которые могут быть реализованы в познавательной модели – их, допустим, два (камень упал или не упал на землю), а, следовательно, имеем один бит информации.

А теперь оценим важность «закона земного притяжения», исходя из предложенных выше расчетов для важности информации. Итак, энергия, поступившая в зрительный анализатор от камня ничтожно мала. Более того, поскольку сформулированный закон далее не перепроверяется, то можно считать, что энергия тратится только на хранение закона в мозге (например, в виде выбранной модели 1), что тоже не требует большой траты энергии. А с другой стороны, каждый раз, когда человек пользуется этим законом для достижения какой-то цели, он тратит заметное количество энергии. Например, он разбивает камнем орех, на что тратит большое количество энергии, используя информацию (познавательную модель), что поднятый с земли камень будет падать на орех, а не взлетит вверх.

Следовательно, при каждом использовании закона, его важность возрастает, так как увеличивается разница между энергией, которая была затрачена на «получение» информации (активацию познавательной модели) об этом законе и энергией, которая расходуется при применении этого закона. Вероятно, в этом кроется причина того, что мы так почитаем людей, открывших законы природы, то есть извлекших из своего банка информации познавательную модель, пригодную для многоразового использования и легко распространяемую среди людей.

2.3. Познавательный потенциал и его пределы

Теперь ответим на вопрос, откуда берутся модели, например, у человека, которые он использует для формирования представлений об окружающей его среде?? Исходя из сказанного, нужно сделать допущение, что эти модели заданы от рождения или, по крайней мере, могут генерироваться случайным образом в некотором участке мозга.

(Правильная модель, то есть отражающая законы природы, отбирается в процессе экспериментального информационного взаимодействия с внешней средой по механизму, описанному в примере с «законом земного притяжения». Следовательно, человек информирован (реально и потенциально) настолько, насколько он обеспечен моделями окружающей его действительности. Или, с другой стороны, познавательные возможности человека ограничены числом моделей окружающего его мира, которые содержатся в его мозге.

Отсюда вытекает любопытное следствие, что все без исключения психически нормальные люди являются потенциальными гениями, поскольку у каждого человека от рождения уже имеется весь набор представлений об окружающей действительности, но он просто не активирован. И отличие гения от обычного человека заключатся лишь в том, что гений в состоянии активировать познавательные модели без посторонней помощи, а все остальные люди – только посредством гения. При этом гений так представляет открытую познавательную модель людям, что она немедленно у них активируется.

С этой точки зрения обучение представляет собой лишь активирование потенциальных познавательных моделей. Можно предвидеть возражение, что не все люди могут сходу осмыслить, например, теорию поля в физике или генетику в биологии. Но это связано лишь с тем, что для понимания сложных познавательных моделей нужно активизировать достаточно много вспомогательных. Такая активизация вспомогательных моделей достигается специальным обучением в качестве профессионала биолога или физика, например.

Исходя из этих представлений, можно ввести понятие познавательного потенциала и степени исчерпания познавательного потенциала. Познавательный потенциал естественно измерять числом моделей, среди которых выбирается правильная. В нашем примере с земным притяжением познавательный потенциал равен 4. Степень исчерпания познавательного потенциала можно определить как число использованных моделей среди мыслимых. В нашем примере с земным притяжением на сегодня использована модель 1 (камень падает на землю) и мы осведомлены о невесомости, то есть использована и модель

Следовательно исчерпание познавательного потенциала = 2/4×100 = 50 %, а значит мы наполовину исчерпали свой познавательный потенциал, связанный с гравитацией. Понятно, что приведенный пример не отражает действительного положения дел в современной теории гравитации, а лишь иллюстрирует предложенную теорию информации. Но вместе с тем, указанные подходы очевидно применимы и к оценке реальных познавательных процессов.

2.4. Неоднозначность представлений о мире

Рассмотрим снова пример с выключателем (рис. 2.2), когда в информационном взаимодействии участвуют: некто нажимающий на выключатель (АБИ), электрическое устройство (НБИ) и Наблюдатель. Допустим теперь, что описанная выше точная схема (модель) устройства (лампочка-выключатель-провода-источник питания) неизвестна Наблюдателю, так как она скрыта от него коробкой. Наблюдатель лишь видит положение кнопки выключателя (включено-выключено) и свет лампочки (светит или нет). То есть мы рассматриваем ситуацию, которая в кибернетике известна как взаимодействие с «черным ящиком», устройство которого нужно угадать, действуя на его входы (выключатель) и наблюдая за результатом, то есть состоянием лампочки.


Рис. 2.2. Неоднозначность представлений об устройстве «черного ящика»


Исходя из результатов взаимодействия АБИ и НБИ, Наблюдатель может предложить, например, следующие варианты внутреннего устройства (информационные модели) «черного ящика»:

1) модель, соответствующая реальной внутренней схеме (лампочка-выключатель-провода-источник питания);

2) модель, состоящая из дублирующих проводов, например, на случай отказа одной из линий;

3) модель, состоящая из двух источников питания, для увеличения длительности энергоснабжения;

4) модель, с двумя меняющимися лампочками, на случай, если какая-то перегорит и т. п.)


Любая из вышеперечисленных моделей будет пригодной для объяснения поведения «черного ящика» в ответ на нажатие на выключатель. Более того, одно и то же поведение «черного ящика» (НБИ) в ответ на нажатие выключателя (АБИ) может быть в равной степени хорошо объяснено практически бесконечным множеством вариантов моделей его строения. Возникает такое ощущение, что неправильных описаний наблюдаемого поведения НБИ бесконечно много, в то время как на самом деле НБИ ведет себя в соответствии с одной, совершенно определенной познавательной моделью, по крайней мере, когда какое-то поведение реализовано.

В связи неоднозначностью представлений о познавательных моделях, возникают, по крайней мере, три вопроса. Во-первых, почему так много моделей годятся для описания поведения НБИ? Во-вторых, как из этого множества мыслимых и правильно описывающих наблюдаемое явление познавательных моделей, выбрать наиболее правдоподобную? В-третьих, что может служить критерием неправильно выбранной для объяснения явления познавательной модели?

Исходя из первого примера с лампочкой, дадим ответ вначале на вопрос – почему так много моделей годятся для описания наблюдателем поведения НБИ? Как мы видим, любой из вышеописанных вариантов строения модели поведения НБИ выглядит разумным, то есть не противоречит наблюдаемому поведению электрического устройства. Что это значит? А то, что предложенные варианты строения модели НБИ могут быть в принципе реализованы в этом мире, если того потребуют обстоятельства. Например, для обеспечения высокой «живучести» НБИ, как в нашем примере с дублированием элементов в электрическом устройстве.

В живой природе, например, как минимум с дублированием встречаемся на каждом шагу: два глаза, два уха, четыре конечности, множество листьев на деревьях и т. п.

Отсюда можно сделать вывод, что у человека, как несравненно более сложного создания, чем выключатель с лампочкой, содержится огромный спектр и действующих и неактивных, до поры до времени, познавательных моделей окружающего мира, которые гарантируют ему высокую степень выживания в среде обитания. Причем, когда модель поведения НБИ скрыта от Наблюдателя (как в примере с лампочкой), то Наблюдатель может подобрать, из имеющегося у него в банке моделей, целый спектр подходящих. Это связано с известным в моделировании принципом: чем более сложная по строению модель используется для описания явления, тем легче с ее помощью имитировать явления природы. Так как усложнению представлений о простом процессе (пример с лампочкой) практически нет предела, то и моделированию простых процессов практически нет предела усложнений. Более того, чем проще устроен наблюдаемый процесс, тем большим числом моделей его можно описать.

В случае простых по механизму явлений природы, выбор из мыслимых моделей его описания основывается на принципе минимальной сложности («бритва Оккама»): не следует вводить сущностей сверх необходимых. На эту тему довольно увлекательно рассуждает кандидат физико-математических наук В.Б.Губин в свой статье «Об одном варианте принципа бритвы Оккама», с которой можно ознакомиться в Интернете по адресу

http://sky.kuban.ru/Phys-Math/gubin/8.HTM.


Если же Наблюдатель сталкивается с явлением, уровень сложности которого превышает его познавательный потенциал (то есть в его банке информации отсутствует модель процесса, равная или превышающая по сложности наблюдаемое явление), тогда принципы его описания Наблюдателем будут кардинально отличаться от моделирования простых явлений. Для предсказания поведения сложного явления, Наблюдатель будет вынужден строить целый спектр познавательных моделей, каждая из которых будет правильно описывать только одну из сторон сложного явления природы. Но Наблюдатель не будет в состоянии предложить единую познавательную модель такого сложного явления, которая была бы применима для всех случаев. Строение живых организмов и окружающий нас мир как раз и относятся к явлениям, сложность которых, по крайней мере, на сегодня, превышает познавательный потенциал человечества. Критерием непостижимости окружающего нас мира как раз и является прогресс науки и, более того, разнообразие наук – каждая из них объясняет только один из аспектов природы, и нет ни одной из них, которая бы объясняла все и сразу.

Итак, исходя из вышесказанного, можно сформулировать два основных принципа, которыми руководствуется Наблюдатель при выборе познавательной модели среди множества мыслимых? Первый и практически наиболее широко используемый – принцип максимально возможной простоты. Второй, которым на сегодня руководствуются исследовали, предлагающие теории строения нашей Вселенной. Он заключается в максимально возможном охвате одной моделью окружающей действительности, чтобы с ее помощью можно было объяснить все явления нашей Вселенной.