Книга Цветоведение и колористика - читать онлайн бесплатно, автор В. Ю. Медведев
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
Цветоведение и колористика
Цветоведение и колористика
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

Цветоведение и колористика

В. Ю. Медведев

Цветоведение и колористика

© Медведев В. Ю., текст, 2019

© «Страта», 2020

Цель преподавания дисциплины, ее структура

Целью преподавания дисциплины «Цветоведение и колористика» является формирование систематизированного знания об основах цветоведения и колористики (как его раздела) и приобретение навыков выполнения колористических плоскостных композиций на базе полученных сведений о принципах и закономерностях составления гармонических цветосочетаний основных групп и типов, а также колористических композиций, основанных на психологическом воздействии цветов и ассоциациях, вызываемых ими.

Занятия общей и специальной композицией, живописью, графикой (в том числе компьютерной), дизайн-проектированием разных объектов, их комплектов, ансамблей, предметных и средовых систем требуют, помимо профессионального овладения знаниями, умениями, навыками, мастерством, развиваемыми в совокупности дисциплинами общехудожественного и специальных циклов, обязательного изучения теоретических основ цветоведения и закрепления полученных в этой области научного знания сведений в определенной системе композиционных упражнений по колористике.

Природа цвета, закономерности в области свето-цветовых явлений природы, особенности зрительного восприятия цвета, ассоциации, вызываемые разными цветами и их сочетаниями, закономерности гармонии цветовых отношений, возможности точного воспроизведения цветовых оттенков и их сочетаний издавна интересовали ученых, писателей, художников, архитекторов, искусствоведов и представителей многих других профессий, чья деятельность так или иначе связана с проблемами цвета и колористики.

Это свидетельствует об огромном значении закономерностей цветовых явлений для многих сфер жизнедеятельности людей.

Широта их применения объясняет многоаспектность теории цвета и обусловливает необходимость рассмотрения и объяснения цветовых явлений с позиций различных областей научного знания: физики (ее раздела – оптики), математики, химии, психофизиологии зрения, психологии, эстетики, теории композиции и др.

Основы цветоведения, изучаемые в курсе лекций, в совокупности представляют собой систему знаний по следующим темам дисциплины:

1. Сущность донаучной и научной эпох познания, осмысления и отношения к миру цвета в процессе развития культуры человечества.

2. Физическая природа цвета; основные характеристики и свойства цвета в их взаимосвязи; цвета спектральные (хроматические), ахроматические, смешанные.

3. Особенности зрительного восприятия цветов глазами человека и его мозгом.

4. Основы трехкомпонентной теории смешения цветов; принципы аддитивного и субстрактивного оптического смешения световых потоков.

5. Цветовые системы, разработанные ведущими специалистами и положенные в основу международных стандартов в области цветоведения; двухмерные и трехмерные цветовые модели.

6. Основы количественной колориметрии.

7. Закономерности цветовых отношений в стандартном 24-секторном цветовом круге и принципы гармонии сочетаний цветов. Типология цветовых гармоний и принципы их применения в композиции дизайн-проектов.

8. Психофизиология зрительного восприятия цветов и типология оптических иллюзий.

9. Психологические ассоциации, вызываемые различными цветами и их сочетаниями, символика цветов.

10. Роль цвета в композиции различных объектов дизайна, возможности использования типологии цветовых гармоний, учета оптических иллюзий и психологических ассоциаций, вызываемых цветами, для достижения эстетической выразительности, художественной образности и композиционной целостности произведений дизайна.

11. Обеспечение точности воплощения колористической композиции, отраженной в документации дизайн-проекта, в реальных объектах, выполняемых в соответствии с проектной документацией; знание основных характеристик пигментов, связующих материалов, способов получения красителей различных видов и разного назначения, а также способов измерения оптических характеристик окрашенных материалов для достижения идентичности их цвета колористике дизайн-проекта.

Перечисленные темы курса лекций обусловливают задачи преподавания дисциплины, решаемые в той же последовательности.

Практические занятия по дисциплине заключаются в выполнении определенных колористических заданий по композиции, ориентированных на закрепление полученных знаний и художественное осмысление закономерностей использования основных типов цветовых гармоний, оптических иллюзий и психологических ассоциаций, вызываемых разными цветами и их сочетаниями. Эти задания выполняются как аудиторно, так и внеаудиторно, в часы, предусмотренные рабочей программой по дисциплине для самостоятельной работы студентов.

Лекции по дисциплине сопровождаются наглядными методическими материалами: рисунками, схемами, таблицами (см. приложения 1, 2).

Для самостоятельного углубленного изучения ряда тем курса лекций студентам рекомендуется соответствующая литература, приведенная в библиографическом списке.

Тема 1. Познание, осмысление и отношение к миру цвета в донаучную и научную эпохи цветоведения

Исторически отношение людей к цвету в окружающем их мире природы и создаваемой из ее материалов предметно-пространственной среды – «второй природы» – изменялось в зависимости от уровня развития материальной, духовной и художественной сфер культуры общества, от осознания роли цвета в различных областях и формах жизнедеятельности людей, от ценностного осмысления значения цвета, его семиотичности для людей, от постепенного перехода от мифологического сознания к научному знанию о природе цветовых явлений.

В книге Л. Н. Мироновой «Цветоведение» [11] эволюция отношения человечества к миру цвета делится на два больших периода. Первый – донаучный – с доисторических времен до конца XVI в., второй – научный – с XVII в. до настоящего времени.

В донаучный период, как справедливо отмечает автор, отношение древних людей к цвету базировалось на жизненно наиболее важных для них явлениях и представляло собой мифологически-символически-практическое отношение (синкретически слитое в сознании первобытного человека). Об эстетическом отношении к цвету в то время говорить еще не приходилось, так как оно не было выделено в самостоятельную область человеческого сознания и ценностного отношения.

Для древних людей не имело значения все многообразие цветов окружающего мира. Они выделяли из этого реального многообразия и наделяли определенным смыслом очень ограниченное количество цветов, связанных с наиболее важными объектами и явлениями их жизнедеятельности.

Так, у древних народов Африки символически значимыми были три цвета: красный, ассоциировавшийся с огнем и кровью, черный – с землей, и белый – с молоком матери как источником жизни детей.

С развитием земледелия и скотоводства у древних людей актуализируются такие важные для их жизни понятия, как солнце, небо, вода, земля и растительность на земле. С ними ассоциировались цвета: красный (солнце), синий (небо и вода), черный, желтый или цвет красной охры (земля) – разные цвета у разных народов, и зеленый – растительность.

Семиотичность цветов природы распространялась и на цвета одежды, утвари, орудий войны и труда, жилищ людей, татуировок. В предметной культуре древних еще нет многоцветия и разнооттеночности колористики.

В античную эпоху (эллинизм) постепенно изживается мифологизм древних в отношении к цвету и выделяется эстетическое сознание (при сохранении и развитии символики разных цветов). Пранаука эллинов – философия – наряду со знаниями о природе, космосе, человеке включает и эстетику. Люди все больше начинают осознавать красоту как таковую.

При этом у древних греков искусность, мастерство, техническое и художественное, имели нерасчлененное значение и обозначались одним термином «techné» (искусство, мастерство). Отсюда впоследствии произошло слово «техника» в его современном понимании. Первоначально такой же смысл имело и латинское слово «ars», из которого впоследствии в романских языках вычленяются разные понятия для обозначения ремесленника и художника (фр. – artiste и artisan, ит. – artista и artigiano, исп. – artistia и artesano).

В античной культуре развивается понимание гармонии цветосочетаний. Возникает полихромия в живописи, архитектуре, одежде, утвари, украшениях. Цвета делят на грубые (варварские) и культурные (эллинские). В соответствии с античной мифологией выделяются цвета, символизирующие цвета стихий, света и тьмы.

В эпоху средневековья в Европе отношение к цвету развивается под влиянием христианской религии и догматов церкви. Цвета делят на «божественные» («богоприятные») и «богопротивные» (некрасивые в соответствии с догматами церкви). Иконопись, росписи в соборах, церквях были канонизированы. К «божественным» цветам относились золотистый, красный, голубой, белый, зеленый, пурпурный. Они считались прекрасными и почитались. Серые, коричневые, многие смешанные цвета считались будничными, прозаичными и презирались.

Культура ислама в странах Ближнего Востока также выделяла цвета благородные, считавшиеся красивыми (в соответствии с Кораном, содержащим догматы веры ислама, начала философии, этики и эстетики). К таковым относились белый, золотой, красный, голубой, зеленый, жемчужный. Остальные цвета считались некрасивыми. Идеал культуры ислама – райский сад и ковер – метафора райского сада. Рай представлялся «садом небытия», «садом блаженства». Мавзолеи, гробницы, храмы (мечети), богословские школы – медресе – украшались цветочным орнаментом.

Стены архитектурных сооружений по цветистости, узорчатости напоминали ковры. Любимые сочетания цветов в колористике зданий, одежды, утвари – это золотой, серебряный, темно-зеленый, белый, шафраново-желтый, фиолетовый, синий, голубой, оранжево-красный. Такая колористика была характерной с V–VI до XVI–XVII вв. в материально-художественной культуре Персии, Ирана, Турции, Узбекистана, Таджикистана и стран Средней Азии.

В эпоху Ренессанса в Европе отношение к цвету, его осмысление и семиотика во многом наследуют идеи античности и средневековья. Развивается и обогащается учение о гармонии цветосочетаний (на основе использования минимума исходных цветов). В то же время существенно расширяются (в работах выдающихся мастеров Возрождения) полихромия и нюансировка цветотональных отношений (в живописи, одежде, украшениях, бытовой утвари). Серые, черные и коричневые цвета признаются достойными применения в художественном творчестве наряду с основными хроматическими цветами. При всех достижениях этой эпохи в ее отношении к миру цвета в природе и материально-художественной культуре оно остается до начала XVII в. ненаучным.

Научный период в истории цветоведения начинается с того времени, как Исаак Ньютон в 1665 г. произвел свои опыты с разложением стеклянной призмой пучка солнечного цвета. Он доказал, что появление радуги спектра на экране при прохождении света через призму объясняется не каким-то влиянием стекла на белый свет (как считалось прежде), а тем, что белый свет является сложной механической смесью разнообразных цветных лучей, преломляющихся в стекле в разной степени. Оказалось, что призма не изменяет белый цвет, а разлагает его на простые составные части, оптически смешав которые можно снова получить исходный белый цвет. Пространственное разделение простых цветов дало Ньютону в руки первый объективный и количественный признак цвета, отвечающий его субъективно воспринимаемой цветности. Ньютону удалось вывести учение о цвете из неопределенности и путаницы субъективных впечатлений на прямую и точную математическую дорогу.

Помимо опытов с разложением белого цвета призмой Ньютон проводил опыты с освещением белым и цветными лучами света очковой линзы (с небольшой выпуклостью), положенной на стеклянную пластинку. При освещении вокруг точки соприкосновения линзы и стекла появляется ряд концентрических радужных колец (от белого света) или одноцветных и темных колец (от соответствующего луча какого-либо спектрального света). Измерение радиусов цветных и темных колец позволило сделать вывод об их закономерной периодичности (√2: √4: √6: √8 и т. д.). Выяснилось, что каждый из простых цветов связан с шириной зазора между линзой и стеклом, отвечающего первому темному кольцу. Вместо показателя преломления (как в опытах с призмой) простой цвет, следовательно, можно количественно определить шириной этого первого зазора. Эта ширина была названа длиной волны, обозначаемой греческой буквой λ. Длины волн видимого света, как показал Ньютон, чрезвычайно малы, они выражаются в миллионных долях миллиметра – миллимикронах, ныне – в нанометрах (нм).

Ньютон измерил, в частности, длину волны цвета, лежащего на границе зеленой и синей частей спектра, определив, что она соответствует λ – 492 нм. А длину волны красного цвета он определил ≈ в 700 нм, фиолетового – 400 нм.

Благодаря опытам И. Ньютона субъективная область цветовых явлений, в течение тысячелетий ускользавшая от научного объяснения, наконец-то обнаружила свою количественную сущность и стала с тех пор вполне доступной точному научному анализу.

После Ньютона многие исследователи природы цвета и особенностей цветовосприятия цветов человеческим зрением (на основе психологии и психофизиологии зрения) развили, дополнили, уточнили и систематизировали научную базу цветоведения. Это И. В. Гете, Я. Э. Пуркине, И. П. Мюллер, Г. Л. Гельмгольц, Т. Юнг и многие др.

В конце XIX в. немецкий ученый Герман Гельмгольц (1821–1894) собрал и подытожил все знания о цвете как физическом и оптическом явлении, привел их в стройную систему, исправил вековые (и тысячелетние) заблуждения в вопросах цветоведения, заполнил пробелы, прояснил недоразумения и сделал физиологическую оптику наукой в современном смысле этого слова, о чем будет рассказано в соответствующей теме данного курса лекций.

Тема 2. Физическая природа цвета. Основные характеристики и свойства цвета в их взаимосвязи. Цвета спектральные, неспектральные, хроматические, ахроматические, смешанные

Цвет – это свойство света вызывать определенное зрительное ощущение в соответствии со спектральным составом отражаемого или испускаемого излучения. Свет разных длин волн возбуждает разные цветовые ощущения.

Цветоведение изучает и раскрывает основные закономерности в области цветовых явлений природы, создаваемой человеком предметной среды и всего мира искусств (тех его видов, которые ориентированы на зрительное восприятие).

Цветоведение объясняет эти явления (их природу, закономерности и особенности восприятия человеком) с позиций ряда наук: физики, математики, химии, психологии, психофизиологии, эстетики, искусствознания, теории композиции, археологии, этнографии, культурологии. Цветоведение объединяет эти разделы знаний о цвете в единую систему науки о цвете.

Оптический раздел физики раскрывает закономерности природы цвета и его характеристики.

Химия исследует свойства веществ и их соединений для разработки рецептур красителей, адекватных требуемым цветам и их сочетаниям, смесям.

Математика (в применении к цветоведению – колориметрия) позволяет осуществлять количественную оценку цветов и определять по соответствующим координатам цветовых графиков цветовой тон и насыщенность требуемого цвета.

Психофизиология раскрывает закономерности физиологии цветного и черно-белого зрения и природу оптических иллюзий.

Психология исследует ассоциации, эмоции, образы, вызываемые различными цветами и их сочетаниями.

Эстетика (в применении к колористике) исследует законы гармонизации цветовых сочетаний, гармоничного сочетания цветов с позиций определенных идеалов эстетического общественного сознания в соответствии с мерой человека, мерой вещи, гармонизируемой цветом, и мерой среды, в которой вещь функционирует и воспринимается.

Теория композиции раскрывает закономерности использования цветов и их сочетаний в соответствии с многообразием функций цвета в композиции произведений искусств и дизайна.

С позиций физики (оптики) цвет имеет световую природу. Возникновение цветовых ощущений невозможно без света. Понятия «свет» и «цвет» неотделимы. Светоцветовые ощущения возникают тогда и постольку, когда и поскольку свет воздействует на глаза человека.

Лучи света, попадая на сетчатку глаза, вызывают импульсы, производящие в мозге ощущение (впечатление) того или иного цвета или их сочетаний.

Среди большого диапазона существующих в природе видов электромагнитного излучения: радиоволнового, инфракрасного, ультрафиолетового, рентгеновского, гамма-излучения, не воспринимаемых зрением человека, выделяется относительно узкий сектор видимого электромагнитного излучения.

Видимый диапазон световых волн колеблется в пределах 380–760 нм.

Белый свет объективно представляет собой оптическое смешение волн различной длины и является не простым, а составным (сложным). Пропускаемый через прозрачную бесцветную трехгранную стеклянную призму луч белого света разлагается на составляющие простые цвета, представляющие собой полосу спектра цветов, плавно переходящих друг в друга в определенном порядке: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый – это спектральные цвета (точнее, цветовые тона), они те же, что и в солнечном спектре (радуге).

Отдельные спектральные цвета, соответствующие определенной длине световой волны, являются простым, или монохроматическим, светом. Они уже не разложимы на отдельные цвета, как белый цвет призмой.

В табл. 1 приведены наименования цвета монохроматических световых потоков, их условные буквенные обозначения и диапазон длин волн [1].

Пурпурный ряд цветовых тонов отсутствует в спектре солнечного света (или любого источника света), поэтому их и называют неспектральными. Их нельзя получить монохроматическим излучением (например при помощи оптического устройства – монохроматора). Но можно создать с помощью смешения лучей двух и более монохроматических излучений (например красного и синевато-пурпурного).


Таблица 1. Спектральные и неспектральные цвета видимого электромагнитного излучения


Примечания:

1. Буквенные обозначения цветов в скобках даны по начальным буквам их названий по-английски (прописным и строчным): B, b – Blue – синий; P, p – Purple – пурпурный; G, g – Green – зеленый; Y, y – Yellow – желтый; O, o – Orange – оранжевый; R, r – Red – красный.

2. Дополнительные длины волн неспектральных цветов даны относительно излучения С МКО (дневной свет).

3. 1 нм = 0,0000001 мм.


Все видимые нами в окружающем мире цвета делят на хроматические (спектральные и неспектральные) и ахроматические (черный, белый, серые), а также их смеси.

Для качественной и количественной характеристики цвета используют такие понятия, как цветовой тон, насыщенность (чистота) и светлота (яркость).

Цветовой тон – качество цвета, определяемое длиной световой волны (в нм) и приравниваемое к одному из спектральных или неспектральных (пурпурных) цветов. Цветовой тон (λ) дает название цвету.

Насыщенность – степень отличия хроматического цвета от равного ему по светлоте (яркости) ахроматического (серого). (Из-за трудоемкости определения этой характеристики цвета ее обычно заменяют другой – чистотой цвета.)

Чистота (колориметрическая насыщенность) – это процентная доля чистого спектрального цвета в общей яркости данного цвета:



где P – чистота цвета; Bλ – яркость чистого спектрального цвета (= 100 %); B ∑ – яркость белого цвета в смеси.

Светлота – степень отличия данного цвета от черного, измеряемая числом порогов различия (n) от данного цвета до черного. (Количественное определение светлоты сложно, требует специального оборудования. В практике колориметрии светлота нередко заменяется другой характеристикой – относительной яркостью.)

Яркость (относительная яркость) – это отношение величины потока света, отраженного от данной поверхности, к величине потока света, на нее падающего. Измеряется коэффициентом отражения ρ (ро). Удобно измерять яркость при помощи шкалы ахроматических (серых) накрасок, коэффициент отражения которых измерен заранее лейкометром, фотометром.

Насыщенность, или чистота, цвета зависит от степени «разбавления» спектрального цветового тона белым, черным или серым (различной светлоты).

Чем больше «примесь» белого (или серого), тем менее насыщенным, чистым является цветовой тон. Он светлеет или темнеет по сравнению со 100 %-ным чистым цветовым тоном. Например, зеленый цвет, имеющий цветовой тон λ – 530 нм и насыщенность (чистоту) – 0,7, представляет собой спектральный цветовой тон с длиной волны 530 нм, состоящий на 70 % из чистого зеленого (данного цветового тона) и на 30 % из белого цвета.

Максимально насыщенные цвета – это цвета спектра и пурпурного ряда (неспектральные).

Цвета с сильно выраженной хроматичностью называются насыщенными.

Малонасыщенные цвета – это цвета, «разбавленные» в той или иной степени ахроматическими, например: бледно-зеленый, бледно-голубой, светло-сиреневый, розовый, светло-оранжевый, бежевый, а также темно-синий, коричневый, темно-зеленый, темно-красный, серо-фиолетовый, темно-коричневый, серо-синий, вишнево-черный.

Качественной характеристикой хроматических цветов является цветность: цветовой тон и насыщенность (чистота), а ахроматических цветов – только светлота.

Насыщенность цветов (также как яркость) неодинакова по отношению друг к другу. Желтый цвет наименее насыщен в спектре, к краям спектра насыщенность повышается. Но по светлоте (яркости) желтый доминирует над другими спектральными цветами.

Значения светлоты (яркости) белого, черного и основных хроматических цветов приведены в табл. 2.


Таблица 2. Примеры яркости и светлоты



Ахроматический (т. е. бесцветный) цвет – название нелогичное, но принятое и устоявшееся в цветоведении. С точки зрения спектральной теории цвета неправильно называть ахроматические цвета (черные, серые, белые) цветами, поскольку они лишены основной характеристики хроматических цветов – цветового тона, а также насыщенности. Если чистота хроматических спектральных цветов равна 100 %, то чистота цветового тона и насыщенности ахроматических цветов равна 0. Поэтому нельзя буквально понимать смысл словосочетаний: белый, серый, черный цвета, но к таким словосочетаниям привыкли, они удобны в разговорной и профессиональной лексике, а потому и закрепились в цветоведении.

Смешение хроматических и ахроматических цветов образует все богатство сложных (смешанных) цветов и их оттенков, наблюдаемых нами в природе и созданной человеком предметно-пространственной среде. Это бежевые, коричневые, оливковые, зелено-коричневые, синевато- и красновато-коричневые, все цветные оттенки серых (с разным количеством серого разной светлоты в смесях с хроматическими цветами) и многие другие цвета.

Взаимосвязь основных характеристик цвета может быть представлена в условно-графических координатных системах цветового пространства. Например, в пространственной цветовой модели – цилиндрическом цветовом пространстве (цветовой системе Манселла, США [1]), см. приложение 1, рис. П.1.1.

Тема 3. Особенности зрительного восприятия цветов глазами человека и его мозгом

Как отмечалось выше, лучи света, испускаемые каким-либо естественным или искусственным источником света или отражаемые от какой-либо поверхности, проходя через зрачок в радужной оболочке и расположенный за ним хрусталик (живую линзу глаза), попадают на ретину (сетчатую оболочку глаза). Сетчатая оболочка (или сетчатка), состоящая из двух слоев: наружного, или пигментного, и внутреннего, или нервного, представляет собой разрастание зрительного нерва, связывающего глаз с мозгом. Именно в соответствующей области мозга и возникают зрительные, в том числе цветовые, ощущения.