Книга The Scientific Basis of National Progress, Including that of Morality - читать онлайн бесплатно, автор George Gore. Cтраница 2
bannerbanner
Вы не авторизовались
Войти
Зарегистрироваться
The Scientific Basis of National Progress, Including that of Morality
The Scientific Basis of National Progress, Including that of Morality
Добавить В библиотекуАвторизуйтесь, чтобы добавить
Оценить:

Рейтинг: 0

Добавить отзывДобавить цитату

The Scientific Basis of National Progress, Including that of Morality

Original research is very productive of new industries and inventions. The discoveries made by Volta, Faraday, and many other investigators, have led to the process of electro-plating, the use of electric lights for lighthouses, and for ocean steamships, and the great system of telegraphs. Those of Davy, Wedgwood, and others, respecting the action of light upon salts of silver, have resulted in the modern processes of photography, which are now in use almost everywhere. The discovery of zinc, by Paracelsus, has been followed by the use of that metal in galvanic batteries, and the great use of "galvanized" iron for telegraph wires, for roofing, and many other purposes. The discovery of nickel, by Cronstedt, has led to the great modern use of that metal in electro-plating, and to that of German silver in the construction of electro-plated and other articles. The discovery of chlorine, by Scheele, formed the basis of nearly all our modern processes of bleaching cotton and other fabrics. The discovery of gun-cotton and nitro-glycerine has led to the use of those substances in blasting rocks and in warfare. The discovery of oxygen, by Priestley, has enabled us to understand and improve in a great number of ways the numerous manufacturing, agricultural, and other processes in which that substance operates. Priestley made many experiments also on the absorption of gases by water, and proposed the resulting liquids as beverages; and those apparently trifling experiments have since expanded into the large manufactures of aërated waters. The discoveries of gutta-percha and india-rubber were indispensible to the great applications of those substances in telegraph cables, and in a multitude of useful articles. The discovery of chloroform and anæsthetics has led to their use for the purpose of alleviating human suffering. The discovery, by Sir Isaac Newton, of the decomposition of light by means of a prism, has led in recent times to the invention of the spectroscope; to the use of that instrument in the Bessemer steel process; to the discovery of a number of new metals, thallium, rubidium, cæsium, indium, and several others, and to the most wonderful discovery of the composition of the Sun and distant heavenly bodies.

Even the invention of the steam-engine was partly a consequence of previous researches made by scientific discoverers. Watt, himself, stated in his pamphlet, entitled "A plain Story," that he could not have perfected his engine had not Dr. Black and others previously discovered what amount of heat was rendered latent by the conversion of water into steam. "Each mechanical advance in the steam-engine has been preceded by and the result of the discovery of some physical law or property of steam." "The first step in the invention of the steam-engine was the experimental research and the discoveries of the properties of steam by Hooke, Boyle, and Papin."2 Had not the steam-engine been developed, it is clear that railways, steamships, machinery, and all the other numerous uses to which that instrument is now applied, would have been almost unknown. The introduction of the steam-engine enabled abandoned Cornish mines to be relieved of water, and to be worked to much greater depths. The discoveries of nitric acid, hydrochloric acid, oil of vitriol, and washing soda, by the alchemists and early chemists in their researches, led to the erection of the numerous great manufactories of those substances which now exist in England and in other civilized countries. There is probably not an art, manufacture, or process, which is not largely due to scientific discovery, and if we trace them back to their source we nearly always find them originate in scientific research.

So far has scientific discovery, and its practical applications to human benefit by invention, now progressed, that every one considers this to be, par excellence, the scientific age. And as discovery and invention continue to progress with accelerated speed, we are encouraged to hope, not only that scientific principles will ultimately be universally recognised as the regulators of all technical industry, but also as a fundamental basis of morality.3

"It is true that some processes of manufacture have not been consequences of abstract scientific discovery – that they originally resulted from alterations made in the rudest appliances, and that they have been directed and improved by the results of simple experience. For ages past we derived the benefit of scientific principles without a knowledge of their existence. We trod in the beaten paths of experience ignorant of the truth that we were acting in unison with fixed and certain laws. Numerous arts and processes were in extensive operation long before the principles involved in them were at all understood. The arts of enamelling and of iron smelting were known hundreds of years before we were acquainted with the principles of chemistry. In some rare instances also the recorded results of daily experience in practical matters, tabulated and studied, have ultimately led to the discovery of scientific laws; but all this is merely the making use of our ordinary experience for the advancement of knowledge, instead of making special experiments for the purpose."

Many of our processes and manufactures, those of glass and copper for example, are of such great antiquity, it is impossible to ascertain with certainty the special circumstances under which they originated; but after we have fully considered the ways in which various modern trades and manufactures have first arisen, we shall come to the conclusion that all manufactures and improvements in manufacturing processes, must have been first produced by the same general means, viz., new observations, although the special circumstances connected with the origin of each were different.

Let us consider German-silver and its manufacture. That substance is an alloy of copper, zinc, and nickel; it owes its peculiar whiteness or "silver-like" appearance to the latter metal, and cannot be made without it; it is certain, therefore, that by whatever means that metal or the alloy was discovered, the discovery was the origin of the German-silver manufacture, and was essential to all manufactures, processes, or appliances in which German-silver, nickel, or any of its compounds are used. Nickel was discovered by Cronstedt during the year 1751, and its compounds were chiefly investigated by English and foreign chemists. Cronstedt found it as a peculiar metal in the mineral called kupfernickel, whilst chemically examining the properties of that substance. The general method by which he discovered it was careful experiment, observation, and study of the properties of matter.

It is stated that the Chinese and other nations made alloys of nickel long before nickel itself was known to be a distinct metal; they had found, by experiment, that when ores of copper and zinc were mixed with a particular kind of mineral and smelted, a white alloy was obtained; but this also proves the general statement already made, that the German-silver manufacture was originated by means of new observations. It was by a more skilful, but similar mode of procedure that Cronstedt isolated the metal itself, and thus laid a definite basis of improvements in the manufacture of its alloys.

No art is probably more antique, or remained longer exempt from the influence of science, than that of match making and obtaining a light. Many adult persons can remember the primitive and old-fashioned tinder-box, which had passed, with its flint and steel, from one generation to another without any material improvement. Phosphorus, it is true, was definitely discovered at least as early as the year 1669, but it was not applied to match making till about 1833. Since then the progress of invention has been so rapid that there are now numerous manufactories which produce many millions per day of phosphorus matches; for instance, those of M. Pollak, at Vienna, and of M. Fürth, in Bohemia, consume together more than 20 tons of phosphorus annually, and give employment to about 6,000 persons, and as one pound of phosphorus suffices for about one million German matches (or 600,000 English ones), those two makers alone produce the astonishing number of 44,800 millions of matches yearly.

Judging by means of the experience already acquired, we cannot reasonably expect that discoveries fraught with such momentous consequences as those of magnetism or of galvanism and electro-magnetism, will be made very often. The progress of scientific discovery is gradual; we have at present but mere glimpses of the new world of truth which is being revealed to us by means of research; we are only at the very commencement of a knowledge of the inherent properties of matter and its forces, and consequently the methods we employ to utilize them are extremely imperfect. Matter has a general property of subdividing and transmuting forces; if we apply one force to a substance or machine, it produces many effects, not only those we want, but those also we do not want; when we heat a piece of iron, the heat produces a number of changes, mechanical, electric, magnetic, and chemical, and it is partly by means of what is termed the "internal resistance" of bodies that these effects are produced, and we know but little of that property. The explosive action in a gas engine produces not only the mechanical force we desire, but also a quantity of heat we do not want, and at a cost of a portion of the gas. In a similar manner, in the steam-engine the largest portion of the heat of the coal is converted into forces which are lost; a large amount of it is uselessly expended in warming the machine itself and the surrounding atmosphere; much also is lost by friction.

That "knowledge is power" is an old maxim, but that new knowledge is new power is a new maxim which scientific discovery has impressed upon us. By means of discoveries we have acquired new powers; by those of electricity we have acquired the ability of conversing with each other at unlimited distances, and by means of those in optics we are enabled to analyse the composition, and perceive some of the physical changes of the most distant heavenly bodies. As our ignorance is probably much greater than our knowledge, more inventions also, and extensions of human power, must ultimately result from discovering new qualities of bodies, than by applying to useful purposes their already known properties.

Experience in science has already shown that it is by means of invention based upon new discoveries that the greatest utilities are obtained, rather than by the exercise of invention upon knowledge acquired long ago. The information obtained by research in former times has been largely exhausted for the purposes of invention by modern inventors, and what we very greatly require now is new knowledge. Experience in science also leads us to believe that the extent of possible discovery is as boundless as Nature, and that an immense amount of new knowledge may yet be discovered. Every discoverer of repute could supply a copious list of investigations yet to be made.

An infinite number of questions in pure science remain to be decided by means of research. Is Electricity decomposible like radiant heat or light? Are the "elementary substances" really compound bodies? Are they all compounds of Hydrogen? Are they all decomposed by very high temperatures, as compound substances are "disassociated" by less elevated temperatures? Under what conditions is Fluorine isolated? Do gases transmit heat by conduction? Under what circumstances is Light converted into Electricity? and into Magnetism? What is the actual size of an atom of Hydrogen? Does Light (without heat) expand bodies? What is the actual molecular arrangement of the atoms of Hydrogen at 60 Fahrenheit? What is the cause of the absence of metalloids in the Sun? What are the properties of Fluorine? What is the vapour density of Cæsium? Under what circumstances is heat wholly converted into mechanical power? &c., &c. All these discoveries when made, will probably, sooner or later, be productive of practical benefits to mankind.

Nearly every manufacturer in this country is deriving, from scientific discoveries, advantages for which there has been little or no payment made to the discoverers. The makers of coal-tar-dyes, and dyers of wool and silk, are using Mitscherlich's discovery of nitro-benzine. Manufacturers of picric acid and "French purple" have enjoyed the fruits of the labours of Dr. Stenhouse. Makers of chlorate of potash and cyanide of potassium are profiting largely by the discoveries of Scheele, Gay-Lussac, and others. All the percussion cap makers are indebted to Howard and Brugnatelli for fulminating silver. Railway-contractors, quarry-proprietors, and others, use nitro-glycerine discovered by Sobrero. Iron smelters are benefiting by the discovery of Bunsen, that 42 per cent. of the heat of the fuel was lost as combustible gases – these gases are now utilized. Telegraphists and electro-platers are also indebted to him for his voltaic battery. The producers of metallic magnesium owe the origin of their process to him as being the first to convert it into wire and make known its great light giving power. Multitudes of persons now use his well-known "Bunsen's burner" for heating, cooking, and other operations. The various telegraph companies, copper smelters, and makers of copper telegraph wire, are using Dr. Matthiessen's discovery of the influence of impurities on the electric conducting power of copper. Phosphorus-makers are reaping the reward of the labours of Gahn and Scheele. The makers of electro-plate and German silver are deriving profits from the labours of Faraday, who investigated electrolysis; of Gay Lussac, who discovered cyanogen; and of Cronstedt, who discovered nickel. Makers of Bessemer steel enjoy advantages derived from the spectrum discoveries of Kirchoff. Iron and copper smelters, metallurgists in general, dyers, calico printers, bleachers, brewers, makers of vinegar, red lead, varnishes, colours, soaps, green vitriol, phosphorus, oil-of-vitriol, and many others, are deriving benefit from the discoveries of Priestley and Scheele. Physicians and their patients are receiving the reward of the labours of Soubeiran, Liebig, and Dumas, in the discovery of chloroform; of the researches of Fourcroy, Vauquelin, Pelletier, and others, in the discovery of quinine; and of many other chemists who discovered numerous remedial substances. By means of the discoveries of Oersted and others, embodied in the telegraph, manufacturers are enabled to anticipate the state of the markets and of the weather, and editors are enabled to obtain the earliest news.

Suppose that Gay Lussac, in 1815, had not discovered cyanide of potassium, and that it had never been discovered, it is highly probable that the manufacturing returns of Birmingham and Sheffield would be much less in amount at the present time than they are, simply because there is no other known substance with which the electro-plating of base metals with gold and silver can be satisfactorily effected. Or suppose that sal-ammoniac, chloride of zinc, or other soldering agents had not been discovered, the extensive and so-called "galvanizing" process could not have been effected, because without those substances the iron articles immersed in the melted zinc would not have received an adhesive metallic coating.

On the other hand, science has in various cases rendered obsolete some manufactures and superseded old customs, comforts and conveniences. We have ceased, or almost so, to use tinder-boxes, snuffers, sulphur matches, rush-lights, tallow candles, sedan chairs, stage coaches, the ancient water-bucket and well, and even the comparatively modern pump; coal fires also are gradually being superseded by fires of gas, and articles formed of solid silver are now being replaced by those of electro-plate; canals have also to some extent been supplanted by railways. But in all these cases science has supplied us either with something better or more suited to our present wants.

The great pecuniary benefits arising from the applications of science are generally reaped in the first instance by the great manufacturers, agriculturists, merchants, and capitalists. Countless fortunes have been made by means of processes and manufactures based upon scientific discovery. The pecuniary benefits of calico printing, bleaching, dyeing; of the great manufactures of cotton, iron, pottery, beer, sugar, glass, spirits, vinegar, gutta-percha, india-rubber, gun cotton, the numerous metals, machinery, electro-plate, washing soda, German silver, brass, phosphorus, manures, the common acids, numerous chemicals, and a multitude of other substances and articles, have been extremely great. More than eighteen hundred million pounds of sulphuric acid alone are manufactured in Europe yearly. The pecuniary advantages of the use of the electric telegraph and railways to merchants, the gains of capitalists by monies invested in railways, telegraphs, steam-ships, cotton-mills, gas-works, iron shipbuilding, engineering, and other great applications of science, have been enormous. The annual gas rental of London alone amounts to more than two millions sterling; and even in Birmingham the produce of gas is more than twenty-five hundred millions of cubic feet yearly. The amount of capital expended in the construction of railways only in this country, has been estimated at more than seven hundred millions of pounds, and the total receipts upon British railways has reached forty-three millions per annum. In the year 1875 our railways carried 200 million tons of goods, and consumed ten million tons of coal; the Great Northern Railway alone consumes 5,000 tons of coal each week. In the year 1877 there existed in the entire world about 198,000 miles of railway, the whole having been constructed since the year 1825. In the year 1880 six hundred millions of journeys were made by passengers on British railways; and the stock of those railways included 13,174 locomotives; 369,694 waggons, 28,717 passenger carriages, and 22,712 other vehicles. The London and North-Western Railway Company alone possessed, in the year 1873, no less than 1,900 locomotive engines, each of a value of nearly two thousand pounds; 4,000 carriages and 36,000 waggons; and it has been estimated by competent authorities, that there are in the world 200,000 steam-engines, having a total power of twelve million horses, or 100 million men. The number of cotton spindles on the whole Earth is estimated at about 71¼ millions. In the United States of America there are about five thousand telegraph stations, and 75,000 miles of line, which transmit yearly about 11,500,000 messages. – The telegrams of Great Britain number about one-fourth of a million per week. The world's telegrams during the year 1877 numbered nearly 130 millions; and the world's letters about 3,300 millions, or 9¼ millions each day. Even the little phosphorus match is being manufactured and consumed at a rate estimated at more than ten thousand millions daily.

Much of the wealth of this country, resulting from science, has been very easily obtained by its possessors. That acquired by means of our coal has especially been obtained without commensurate effort. The amount of that substance raised in Great Britain during the year 1876 was 734 millions of tons. To draw upon a great stock of that mineral is like drawing money from a bank, because coal, unlike any other abundant substance (except wood and petroline), contains in itself an immense store of energy, which is evolved as heat during combustion, and may be utilized. Each piece of coal contains sufficient energy to lift its own weight twenty-three hundred miles, but it costs only a small proportion of that power to extract and raise it from the mine. I do not mean by these remarks to imply that the wealth accruing from this great store of power in coal is derived chiefly by the owners of coal mines.

This acquisition of wealth without commensurate sacrifice is not an unqualified advantage; it constitutes a debt to nature, which upon the great principle of causation, and of equivalency of action and reaction, must sooner or later be repaid. Judging from the infallibility of the action of those laws, and the signs of the times, this nation is now beginning to repay in the form of emigration of trade to other lands, and of relatively less rapid national advance, the debt incurred by undue pecuniary success. An excess of money or power obtained without equivalent effort, fails to properly develop the intelligence of its possessors, and nations have been hastened to ruin in this way. Our great success in getting money has attracted many from the pursuit of knowledge, and our love of knowledge has not increased as fast as our wealth. The wealth of the upper classes has, by decoying from study undisciplined young men at our old Universities, kept down the general standard of scientific instruction throughout the country, and, by leading to neglect of scientific research, is now retarding our progress in arts, manufactures, commerce, and civilization. The consequent relative poverty of the working classes is also producing similar effects by retarding education, and contributing towards the great deficiency of skilled labour, of which our inventors, manufacturers, and others so strongly complain in the working of their scientific processes. Had a just share of the great amount of money, gained by the application of science to useful purposes, been applied to the payment and maintenance of scientific discoverers and inventors, as it should have been, the general standard of scientific education would have been higher, the poor would have had more employment and money, and the happiness and civilization of all would have been greater.

In a usual way the greatest pecuniary benefits, arising from science, sooner or later go to enrich the possessors of land. The demand created for coal, iron, lime, building-stone, and all the metals, by the industrial applications of science, has greatly increased the value of land under which those substances lie. The value of cultivated land has been everywhere increased by the discoveries of agricultural chemistry. Land has also been required for railways in nearly all parts of the kingdom, and has thereby been considerably raised in value. Discoveries produce inventions, inventions give rise to processes and manufactures, the employment of workmen and others, and the erection of workshops and dwellings, and these have rapidly increased the value of building ground. In Lancashire the value of such ground has been greatly increased by the inventions of the steam-engine and machinery, the discovery of chlorine, and their application to cotton manufacture. In all the great manufacturing districts, and in all the chief centres of industry, a similar result has occurred. Wherever a railway has been constructed, the value of land has also increased in consequence of the increased facilities of communication. All these great additions to the value of land are largely due to the unpaid labours of scientific discoverers, and it may be said that this nation has largely gained its wealth, and is still living in a great degree on the products of those labours. Those great additions to the value of land are also permanent, are continually increasing, and are largely independent of any exertions on the part of the owners. That many other influences, besides that of science, have contributed to the development of our manufacturing and commercial prosperity is also true, but it would be foreign to the subject of the present chapter to point them out.

It is a fallacious argument to say that scientific discovery and increased value of land are only remotely connected together, a cause as certainly produces its effect, however many connections lie between them, provided the connections are certain – the number of links in a chain makes no difference in the transmission of motion from one end of it to the other. Great causes are frequently distant and wide-spread in their effects. Persons in general can easily understand that an acorn planted in the ground will in the course of time become an oak, because it is a palpable and visible effect; but they cannot so readily perceive that the benefits resulting from a knowledge of science ramify through all our manufacturing, artistic, and commercial occupations, our social and moral relations, and our every-day life, not because the dependence of our welfare upon science is less real, but partly because the connection between the two is less understood.

Not only has science benefited manufacturers, but also operatives, because the extension of science to manufacturing purposes has compelled them to make themselves acquainted with intellectual subjects. "Instead of remaining mere machines, mechanically performing the work set before them, they are obliged to exercise the faculties of observation and judgment in watching the results and directing the action of mechanical, physical, and chemical powers. Instead of following the blind path of experience, using unknown forces to accomplish some definite result, they pursue their labours with the aid of known and certain laws." It is true that in many cases artisans who have acquired a little knowledge of science have thereby been rendered conceited and unfit for their special employment, and this has made many manufacturers object to technical scientific education for their servants; but this would not be so much the case if scientific knowledge were more generally and equally diffused. Arguments are not unfrequently adduced to support the opinion that ignorance has its advantages; but, however great the advantages of ignorance may be, those of knowledge are greater.